بررسی ارتباط مقاومت کینولونی و بیالکاتمی با قدرت کیسپولزایی در بین سویه‌های سودوموناس آترژینوزای جدا شده از ادرار عبرالعی ایمانی فولادی، مرلشی سنتاری، احمدعلی پور بابایی، مرجان غلامی

چکیده
سایفره و هدف سودوموناس آترژینوزا یکی از گونه‌های فرضی خلط و مهم بیمارستانی است و مقاومت بالایی به اکثر آنتی‌بیوتیک‌های رایج دارد. در این مطالعه، مقاومت سوادوده‌های سودوموناس آترژینوزای جدا شده از ادرار در پاییز کینولونا و بیالکاتم با استفاده از کیسپولزایی در نزدیکی کننده با روش بررسی قرار گرفت و ارتباط کیسپول با مقاومت دارویی مورد ارزیابی قرار گرفت.

روش بررسی: در این تحقیق جنگلی 100 سوادوده سودوموناس آترژینوزا از بیمارستان امام حسن (ع) تهران جمع‌آوری شد و حساسیت سویه‌ها در مقابل برخی از کینولونا و بیالکاتم‌ها به روش فلزاتکی محاسبه می‌شود. (MIC) با روش رفت و آگ runaway به سرعت تقابل بالای بیالکاتم غیر سویه‌های مزمن که کیسپولزایی و غیرموادمیکوتیکی از هر دو گروه تولید شده و ارتباط آنها با مقاومت آنتی‌بیوتیک مورد بررسی قرار گرفت.

یافته‌ها: در روش MIC سویه‌ها نسبت به انزیکسازی 0 درصد، سپرفلوکسازین 89 درصد، نالیپیدسیک اسید 59 درصد، سفینژولکسم درصد بررسی دارویی نسبت به سویه‌ها بود، شامل 26 درصد، دردسر 26 درصد، نالیپیدسیکایسید 20 درصد، سپرفلوکسازین 26 درصد، سفینژولکسم 89 درصد، نالیپیدسیک اسید 69 درصد، از نظر وجود کیسپول سخت ارزیابی شدن و فقط گروه کیسپولزایی با هم فرق می‌کرد.

نتیجه‌گیری: مقایسه این دو روش در تعیین حساسیت نسبت آنتی‌بیوتیک‌های مورد استفاده در کیسپولزایی با مکانیسم مقاومت در مقیاس با روشنی بی‌روشی در کیسپولزایی با اینکه کیسپولزایی، کیسپولزایی، بیالکاتم‌ها، و اکثر می‌کند (1). بیشتردامد محصولاتی این باکتری توسط محققین بررسی گشت و با پژوهشگری تا نام‌های مختلفی اعلام شد تا

وان‌گار کلیدی: سودوموناس آترژینوزا، مقاومت آنتی‌بیوتیکی، کینولونا، بیالکاتم‌ها، کیسپولزایی

مقدمه
قلم از کشف سودوموناس آترژینوزا، پژوهش‌های مشابه چرخ متمایل به نگر سیر را نشان دهنده برای وحیدکردن عفونت تلقی آمده است. مطالعه، دانشگاه علوم پزشکی، دانشگاه تربیت مدرس (email: sattarim@modares.ac.ir)
مقاومت کیتولوئین و بی‌پالیکوفیک سوپه‌های سودوموناس آتروژنوزا

۱۹۸

نمونه‌های DNA

را در می‌گیرد. سوپه‌های مکرونیتیس سودوموناس آتروژنوزا

زا بایک و ژن‌های ژن‌های به دنبال سلول‌های کلونینگ لیزر ژن‌های

از طریق اتصال به

اهامیتی‌های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

برای نمونه‌های DNA آزمایش

بی‌پالیکوفیک سوپه‌های سودوموناس آتروژنوزا

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و

از طریق اتصال به

های این مخصوص امرک‌های گی‌کور در دایر سیلیکسیک از

از DNA استفاده و

از طریق اتصال به

دایر الگریز

از DNA استفاده و
پسندموناس ارژینوزا ATCC 27853

VESSELS

۱۰۰ نمونه بازیگان سودوموناسات آتروژینوزا از بیمارستان استانی خمیس تهران جمع‌آوری شده که به تفکیک بخش‌ها در نمودار ۱ آمده است. در بخش‌های پیوندهای و بیشترین و در بخش اوراژنس کمترین سهول جداسازی شده.

کسب و به میزان کمترین حد خود تولید شده این سویه مجدد
آنی پیوگرام نشده و
کشت مولتینون تهیه گردید پس از اینکه محیط
کشت مولتینون حاول رفتین مختلف آنتی‌بیوتیک آماده
شد، سوپرسانسیون میکروویما با غلظت ۰/۱۵٪ باکتری در
مایی‌تیر به میزان ۲ میکروانیل و سوپرسانسیون ۰/۱۰ باکتری
بسته نقطه‌ای بر روی پیل یک کشت داده شد و پس از چند
روند در سطح محیط کشت، به مدت ۲۴ ساعت بصورت
واورن در انکاپیور قرار گرفت و تنبیه بصورت رشد و
رشد باکتری در محیط کشت ارزیابی گردید (۱۹،۱۸). برای
صحت نظام تماش و ارزیابی قدرت ضد میکروبی پودرهای
آنی پیوگرامی از سوپسهای استاندارد
E Coli ATCC 25922 و aeruginosa ATCC 27853

استفاده کسی برای نظام طبی جدول NCCLS
به منظور تعیین MIC باید
مانند MIC باکتری
روش NCCLS را استفاده شد.
میزان میکروگرم بر میلی‌لیتر تهیه کرد. از این لوکس بدن آنتی‌بیوتیک به شکاف کننده مشابه منفی و از
سوپسهای استاندارد Psudomonas aeruginosa ATCC 27853
E Coli ATCC 25922 و ۲۵۹۲ و
استفاده شد. در هر کدام از لوله‌ها تعداد ۸۰ باکتری در
ساعت انکاپیور رشد و رشد باکتری در لوله بصورت
کدورت‌سنجی مورد بررسی قرار گرفت. ولی لوله‌ای از
محیط کشت کف آنژه کور در دید کرومی‌بود، عناون MIC
در نظر گرفته شد. بهره برای MBC
از این لوله و دو لوله
حاوی مونشر بعد آنتی‌بیوتیک نمونه‌داری هست و بر نوی
محیط کشت مولتینون آگار بصورت خلاص کشت داده
شدند به مدت ۲۴ ساعت در درجه دو انسونی. کشت
کاست که فاقد میکروگرمی بود، به عنوان
ظرش در نظر گرفته شد. در واقع همان غلظتی
که آنتی‌بیوتیک که ۹۹/۸ درصد اگزوسپرم را کشت و تیپ
۱/۰ درصد از آنها زده بودند. البته گاهی اوقات
هم برای کاهش مقاومت در این نوع
MBC و MIC به میزان بهترین
یک میکروکبی گونه‌ای قابل مشاهده با میکروکبیکه نوری
روش میکروکبیکه نوری می‌باشد. در این بحث دارای
تعمق و ژئترین واکنش مایع و
نزن توپلین کیپسول پودردی در محیط کشت
فراوانی ایزوله‌ها حساس، متوسط و مقاوم نسبت به هر
کیک از آنتی‌بیوتیک‌ها به روش انتشار در دیسک

نمونه ۱- فراوانی ایزوله‌ها حساس، متوسط و مقاوم نسبت به هر

برای NCCLS به تغییر در مقادیر
MBC و MIC نشان داد که
در محیط کشت
که در این بحث
می‌باشد. در این بحث دارای
تعمق و ژئترین واکنش مایع و
نزن توپلین کیپسول پودردی در محیط کشت
فراوانی ایزوله‌ها حساس، متوسط و مقاوم نسبت به هر
کیک از آنتی‌بیوتیک‌ها به روش انتشار در دیسک

در دوره ۱۹ شماره ۲ تایستان،

محمود کیتولیتن هنگام گردید پس از اینکه محیط
کشت مولتینون حاول رفتین مختلف آنتی‌بیوتیک آماده
شد، سوپرسانسیون میکروویما با غلظت ۰/۱۵٪ باکتری در
مایی‌تیر به میزان ۲ میکروانیل و سوپرسانسیون ۰/۱۰ باکتری
بسته نقطه‌ای بر روی پیل یک کشت داده شد و پس از چند
روند در سطح محیط کشت، به مدت ۲۴ ساعت بصورت
واورن در انکاپیور قرار گرفت و تنبیه بصورت رشد و
رشد باکتری در محیط کشت ارزیابی گردید (۱۹،۱۸). برای
صحت نظام تماش و ارزیابی قدرت ضد میکروبی پودرهای
آنی پیوگرامی از سوپسهای استاندارد
E Coli ATCC 25922 و aeruginosa ATCC 27853

استفاده کسی برای نظام طبی جدول NCCLS
به منظور تعیین MIC باید
مانند MIC باکتری
روش NCCLS را استفاده شد.
میزان میکروگرم بر میلی‌لیتر تهیه کرد. از این لوکس بدن آنتی‌بیوتیک به شکاف کننده مشابه منفی و از
سوپسهای استاندارد Psudomonas aeruginosa ATCC 27853
E Coli ATCC 25922 و ۲۵۹۲ و ۲۵۹۲ و
استفاده شد. در هر کدام از لوله‌ها تعداد ۸۰ باکتری در
ساعت انکاپیور رشد و رشد باکتری در لوله بصورت
کدورت‌سنجی مورد بررسی قرار گرفت. ولی لوله‌ای از
محیط کشت کف آنژه کور در دید کرومی‌بود، به عنوان
ظرش در نظر گرفته شد. در واقع همان غلظتی
که آنتی‌بیوتیک که ۹۹/۸ درصد اگزوسپرم را کشت و تیپ
۱/۰ درصد از آنها زده بودند. البته گاهی اوقات
هم برای کاهش مقاومت در این نوع
MBC و MIC به میزان بهترین
یک میکروکبی گونه‌ای قابل مشاهده با میکروکبیکه نوری
روش میکروکبیکه نوری می‌باشد. در این بحث دارای
تعمق و ژئترین واکنش مایع و
نزن توپلین کیپسول پودردی در محیط کشت
فراوانی ایزوله‌ها حساس، متوسط و مقاوم نسبت به هر
کیک از آنتی‌بیوتیک‌ها به روش انتشار در دیسک
مقایسه کینولونی و بتالاتینا سودوموناس آتروژنوزا

جهت اطمینان از صحت انجام آزمایش و تأیید آن، از سودوموناس استاندارد نیز استفاده شد. بیشتر میزان مقدار MBC به آنتیبیوتیک کوآمکسی-کلا (100 درصد) و کمترین مقدار MBC به نوروفلوبکسان بنزین (11) بود.

پس از بررسی مقایسه MIC در سودوموناس آتروژنوزا به روش قدرت در آگر مشخص گردید که هدف‌های مختلف به پژوهشک‌ها و اولویت‌های کاری که در آگر سودوموناس کزم در 10 میکروگرم بر میلیویلی بهبود و در حالی که برای آنتی‌بیوتیک‌های سافتژورکسیم-سافرایکاسون و ناپیدیکاسون اینند به بهبود از 120 میکروگرم بر میلیویلی لیبر رزید (جدول 1).

جدول 1- تعداد سودوموناس Psudomonas aeruginosa مختلف نسبت به پنج آنتی‌بیوتیک انتخابی به روش MIC قدرت در آگر.

<table>
<thead>
<tr>
<th>MIC (میکروگرم بر میلیویلی)</th>
<th>تعداد سودوموناس Psudomonas aeruginosaها (100)</th>
<th>SE = 15</th>
<th>TE = 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاپرفلوبکسان</td>
<td>79</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>اپاژورکسان</td>
<td>10</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>ناپیدیکاسون</td>
<td>33</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>ناپیدیکاسون</td>
<td>8</td>
<td>65</td>
<td>15</td>
</tr>
</tbody>
</table>

به نظر می‌رسد که سودوموناس آتروژنوزا یک پاتوژن فرستمطابع و غلاف اقلیمی Staphylococcus aureus و E.coli می‌باشد (27). این باکتری دارای مقاومت به آنتی‌بیوتیک‌های بالای است و این خصوصیت منجر به سختی درمان می‌شود. لذا بررسی گزار

جدول 2- تعداد سودوموناس Psudomonas aeruginosa مقایسه MBC مناسب نسبت به پنج آنتی‌بیوتیک انتخابی به روش MIC قدرت در لوله.

<table>
<thead>
<tr>
<th>MBC (میکروگرم بر میلیویلی)</th>
<th>تعداد سودوموناس Psudomonas aeruginosaها (100)</th>
<th>SE = 15</th>
<th>TE = 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاپرفلوبکسان</td>
<td>79</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>اپاژورکسان</td>
<td>10</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>ناپیدیکاسون</td>
<td>33</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>ناپیدیکاسون</td>
<td>8</td>
<td>65</td>
<td>15</td>
</tr>
</tbody>
</table>

نمودار 1- فراوانی ایزوله‌های حساس و مقاوم نسبت به هر یک از آنتی‌بیوتیک‌ها به روش سربیلی رفت در لوله کاهش کسیول در سودوموناس مورد آزمایش مشابه کاهش به میزان 4 تا 8 برای نسبت به حالتی که با کردن MIC محیط طبیعی کسیول را به تخمک کرده می‌کرد (2005).

بحث

سودوموناس آتروژنوزا یک پاتوژن فرستمطابع و غلاف اقلیمی Staphylococcus aureus و E.coli می‌باشد (27). این باکتری دارای مقاومت به آنتی‌بیوتیک‌های بالای است و این خصوصیت منجر به سختی درمان می‌شود. لذا بررسی گزارش سیاپرفلوبکسان و ناپیدیکاسون اینند به بهبود اثرات کوآمکسی-کلا نرمید (جدول 3).

بیان آنتی‌بیوتیک‌های بازمانده به روش MIC نسبت به پنج آنتی‌بیوتیک انتخابی به روش MIC قدرت در لوله.

<table>
<thead>
<tr>
<th>MBC (میکروگرم بر میلیویلی)</th>
<th>تعداد سودوموناس Psudomonas aeruginosaها (100)</th>
<th>SE = 15</th>
<th>TE = 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاپرفلوبکسان</td>
<td>79</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>اپاژورکسان</td>
<td>10</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>ناپیدیکاسون</td>
<td>33</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>ناپیدیکاسون</td>
<td>8</td>
<td>65</td>
<td>15</td>
</tr>
</tbody>
</table>

تمام سودوموناس با بیمارت به همراه سودوموناس استاندارد (کسیول) و

بودن کسیول) با مرکزیز رنگ آمیزی ضد و خصوصیت

میکروسکوپیک آنها از نظر وجود کسیول و خصوصیات
REFERENCES


