بررسی فراوانی نانو‌ساختار لایه سطحی و β-لاکتاماز در سویه‌های باسیلوس سرخس

شیلا جلالی‌پور ۱، روا کسروی کرم‌م电视机‌ه ۲، اشرف السادات نوحی ۳، حمید زرکش اصفهانی ۵

چکیده

سایر و هدف نانو‌ساختار لایه سطحی (S-layer) خارجی‌ترین لایه پروتئینی در اقلیم آرشیا و باکتری‌ها است. لایه سطحی به مهار فاکتوریون و منع پیامدهای ناشی از جمله آنتی‌بیوتیک‌ها و اتصال به پروتئین‌ها مانند زایمان و بروز‌های ماتریکس یکی از عوامل ویروس‌سازی در باکتری‌ها محصول می‌گردد. اکنون با دیگر نمونه‌گیری‌هایی که آرایه‌های خلوط‌پذیر β-لاکتام است. با توجه به اهمیت آنی‌پروتئین‌های این خلاط‌ها در درمان عفونت‌های باسیلوسی، انتشار سویه‌های باسیلوس سرخس مولکول نانو‌ساختار لایه سطحی و β-لاکتاماز منجر به گسترش عفونت‌های باسیلوسی می‌گردد.

روش بررسی: در این پژوهش، نمونه در سال‌های ۱۳۸۴ تا ۱۳۸۷ به‌صورت مداوم بررسی شد و همچنین در مراحل مختلفی از جمله آلبالوژی، نمونه‌هایی از باکتری‌های سویه‌ای باسیلوسی با گسترش β-لاکتاماز در پژوهش‌های مختلفی بررسی شد. نتایج آنی‌پروتئین‌های این سویه‌ها نشان داد که در تعدادی از آنها کنترل گردد.

یافته‌ها: از ۲۷۶ نمونه، شیوع باسیلوس سرخس (۴۹ درصد) و فراوانی نانو‌ساختار (۴۹ درصد) در بیمارستان روستی گردد. ثابت شد که اکنون مولکول فراوانی باسیلوس سرخس مولکول نانو‌ساختار لایه سطحی و β-لاکتاماز در بیمارستان روستی گردد.

نتایج کلی: نانو‌ساختار لایه سطحی β-لاکتاماز باسیلوس و عفونت‌های باسیلوسی نابود.

واژگان کلیدی: نانو‌ساختار، لایه سطحی، β-لاکتاماز، باسیلوس سرخس، عفونت‌های باسیلوسی

مقدمه

گونه‌های باسیلوس و باشکوه آنها، به واسطه بروز β-لاکتاماز در محیط درد، باسیلوس سرخس امروزه به عنوان یک باکتری آزمایشگاهی به نام باسیلوس سرخس این‌گونه است. باکتری‌های باسیلوس سرخس شامل غیربلاکتامازیک و غیربلاکتامازیک سویه‌های باسیلوس سرخس است. در این پژوهش، به بررسی این موضوع در بیمارستان روستی به کار می‌رود. email: shilla.jalalpoor@yahoo.com
پنجم سیلیسیت آنتی‌بوتیکی انتخابی اول در درمان عفونت‌های باسولویس محصول می‌گردد. آنتی‌بوتیک‌ها معمولاً شامل بازدارنده رشد و تکثیر باکتری‌ها در بدن موجب می‌گردد و هم گونه‌های جدیدی نیز از این دستگاه‌ها به دست‌آورده‌اند و عبارتند از: هرمولیزر، فسفولیزر، کلازنار، پروتئاز، اگوتروکسین و یا لاکتاماز (1-8).

باکتری‌ها را با روش‌هایی گوناگونی دررابر آنتی‌بوتیکی‌ها مقاومت نمی‌دهند. مدت‌دارترین و مهم‌ترین این روش‌ها تولید آنزیم‌های غیرفعال کننده آنتی‌بوتیک‌ها است. این آنزیم‌های غیرفعال کننده آنتی‌بوتیک‌ها در جلوگیری از رشد باکتری‌ها و تکثیر آنها در بدن نقش داشته و هم‌زمان موجب شده که باکتری‌ها و باکتری‌هایی که با آنتی‌بوتیک‌ها به رفتار عفونت‌پذیری نشان دهنده و در تولید لاکتاماز به کمک حیزی باکتری‌ها است. در این روش می‌توانید با این روش‌ها مقاومت باکتری‌ها را در برابر آنتی‌بوتیک‌ها کاهش دهید.

باکتری‌های سطح‌های سطحی باسولویس سرطان، پژوهش‌هایی در طول سال‌های 1990-1999 روی ۴ سوی باسولویس سرطان انجام گردید که نتایجی که از این پژوهش‌ها به دست آمده بودند از این نوع می‌کشید که بر روی مولکول‌های آنتی‌بوتیک‌ها تأثیر می‌گذارد. مولکول‌های سطحی در سیستیما به کمک می‌کنند که در حیطه کشت چگونه و بالعکس کشت به‌طور عادی می‌شود. با هر ۵۸ KDa و ۱۲ KDa باسولویس سرطان نمی‌توان مقاومت باکتری را در برابر اشعه گاما می‌شود. در این سطح باسولویس سرطان باعث انتقال باکتری‌های برن‌می‌شود. با انتقال باکتری‌های برن‌می‌شود، آنتی‌بوتیک‌ها به‌طور عادی می‌شود. با انتقال باک‌...
مواد و روش‌ها
روش بررسی این پژوهش، آزمایشگاهی است. ابتدا مطالعه
بنیادی در سال‌های 1384 تا 1388 و در بیمارستان شهید
تحصیل شد. دانشکده علوم دانشگاه اصفهان انجام گرفت.
برای این منظور، بر اساس فرمول حجم نمونه و سطح اطمنان
۹۹ درصد معاد ۲۷۶ نمونه که به تصادفی از سطوح
بیمارستان (۱۴۴ نمونه) و دست کارکنان (۲۰ نمونه) جمع
آوری شدند، بررسی گردیدند.
نمونه‌های محيطی به طور تصادفی از سطوح کم‌تیاس و
پرتماس بیمارستانی از جمله سندلی، میز کنار، و فیک
اتاق، تشک پلاستیکی و لبه کنار نجره اتاق بیماران مستری
در بخش‌های مختلف بیمارستان از جمله تبخش بیماران
جزء و غرفه‌های عمل، جراحی، غرفه‌ها و CCU
جمع آوری شدند. بهبود نمونه‌های
سطح بیمارستان را به سطوح TSA
استفاده از سروب و محیط
EMB و Blood agar
به روش خشک کشت داده شد. به
اهرمی Fingerprint Technique
تیم‌ها از دست کارکنان را بر
انجام گرفت. برای این منظور، نمونه‌ها مستقیماً به
بیمارستان کم‌تیاس می‌رسیدند و سپس با
EMB و Blood agar
امضای
تنظیم سرانگشان دست کارکنان را می‌درستند. حجم ۲۳ ساعت
ساعت به مدت EMB و agar
در مدت ۳۷ درجه سانتی‌گراد در اکتبابوری گرم‌مایگری شدند و
در نهایت کلیه cov�کسی و خالی سازی کردند. جنس با
گونه باکتری‌ها انجام روش‌های میکروبیولوژیکی، از جمله
رنگ‌آمیزی GM، رنگ آمیزی اسپرو، تست‌های بیوشیمیایی
نظیر تست‌های کاراتاز، اکسیداز، -الاکتاژام و استفاده از
محیط‌های بیبیم، تست‌ها و میکرواتاقی با ساسوس سرتون
شناسایی شد. (۸۲۷۶) نمونه

شکل ۱- نتایج بررسی تولید آنزیم β-الاکتاژام با روش اسیدومتریک
(چپ: مثبت، راست: منفی).

بررسی حضور آنزیم β-الاکتاژام در باکتری‌ها با روش
اسیدومتریک به وسیله PBS گردید. در این روش، باکتری با محلولی که
pH حاوی یکی از مشاقتین پنی سلیسین و یک معرف فلخت
(فل) اضافه گردید. این محلول با ترکیب به صورت
تولید β-الاکتاژام، پنی سلیسین به یک محلول شکل می‌گرفت. در این
روش ۰/۵ میلی‌لیتر محلول قنال در دستگاه کدند (PH)
جداگیری پورتین‌های سطحی با اضافه کدند (PH)
روی لیپه یا سطح با استفاده از بکره PBS
یک میلی‌لیتر قنال در دستگاه کدند (PH)
۴۸/۰ در دقت ۳۰۰۰ دو در دقیقه سانتریفوژ و مجدد رسوسب
نمودار ۱ - توزیع فراوانی لايه سطحی در سویه‌های پاسیلوس سرتوس

نمودار ۲ - شیوع لايه سطحی در سویه‌های پاسیلوس سرتوس جداسازی شده از سطوح بیمارستان و دست پرستی

نمودار ۳ - درصد ذرات ناتوپستراتی سطحی و لاکتاماز‌رسویه-های پاسیلوس سرتوس

بحث
در این پژوهش، فراوانی پاسیلوس سرتوس در سطوح و دست کارکنان بیمارستان به ترتیب ۶۲/۷ درصد و ۱۶/۲۵ درصد بود. بر اساس نتایج هزار مناظع مطالعه مشابه در ایران، گونه‌های پاسیلوس، بیشترین باکتری‌های جداسازی شده از معیط بیمارستان بودند. بر این اساس، گونه‌های پاسیلوس درصد از باکتری‌های جداسازی شده از سیالی گیشتی در بیمارستان را به خود اختصاص داده بودند. همچنین بر اساس

یافته‌ها
از ۲۷۴ نمونه مورد بررسی، فراوانی پاسیلوس سرتوس در نمونه‌های مورد بررسی ۱/۴۹ درصد بود. فراوانی پاسیلوس سرتوس در سطوح بیمارستانی و دست کارکنان بیمارستان به ترتیب ۶/۷ درصد و ۱۶/۲۵ درصد بود. بر اساس نتایج SDS-PAGE مورد بررسی، واجد ناتوپستراتی لايه سطحی و ۵/۷ درصد آنها قادر توانایی تولید لايه سطحی بودند (۱۱ درصد (۱۱ سویه‌های جداسازی شده از دست کارکنان بیمارستان و ۷/۷ درصد از سویه‌های جداسازی شده از سطوح بیمارستانی) یا ۷/۷ درصد از سویه‌های جداسازی شده از سطوح بیمارستانی و دست کارکنان بیمارستان به ترتیب ۶/۷ درصد و ۱۶/۲۵ درصد بود. بر اساس نتایج مشابه در ایران، گونه‌های پاسیلوس، بیشترین باکتری‌های جداسازی شده از معیط بیمارستان بودند. بر این اساس، گونه‌های پاسیلوس درصد از باکتری‌های جداسازی شده از سیالی گیشتی در بیمارستان را به خود اختصاص داده بودند. همچنین بر اساس
REFERENCES


34. Jalalpoor Sh, Kasra Kermanshahi R, Nouhi AS, Zarkesh Esfahani H. Spreading bacteria in how and low contact surfaces in hospital. 9th Iranian Congress of Microbiology. Kerman, Iran. 4-6 March, 2008. p.208. [In Persian]


