ارزیابی روش‌های مختلف حذف بازدارنده‌های آلتی جهت راه اندازی یک روش حساس به منظور به‌کارگیری بیماری‌های عفونی انتروپیروروس در نمونه‌های فاضلاب

دکتر محمد کاظمی ۱، سارا صادقی پور ۲، دکتر حسین‌دیده طباطبایی ۳، دکتر محبوب ساری‌خانی ۴، مریم قاضی ۵، دکتر رخن‌شهدی تاج ۶

۱ استاندارد گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد چم گرگان.
۲ استاندارد گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد چم گرگان.
۳ استاندارد گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد چم گرگان.
۴ استاندارد گروه میکروبیولوژی، دانشگاه آزاد اسلامی، واحد چم گرگان.

چیکیده
سابقه و هدف: انتروپیروروس‌ها یکی از شاخص‌های حساس گردن و بروز در اجتماع محسوب می‌گردد. یکی از روش‌های عمدتاً در فیشکس انتروپیروروس از کشت‌های سلولی حساس است. اما ارتقای به زمان بر پدیده‌نگاری و همچنین کاهش به انجام تست‌های نادرست استفاده از روش‌های مستقیم مولکولی جهت تشخیص انتروپیروروس‌ها مورد توجه قرار گرفته است. این روش به‌منظور ارزیابی روشنایی مختلف حذف بازدارنده‌های آلتی موجود در فاضلاب به منظور تشخیص انتروپیروروس‌ها و سریع تر روش انتخابی قرار گرفت. استفاده از روشنایی متعدد روش‌های به‌منظور استفاده از ICC-RT-PCR همانند 0.01TCID50 مورد شناسایی کرده و در مورد عفونت انتروپیروروس‌ها و سریع تر تشخیص این انتروپیروروس‌ها فعالیت دارای میوه‌های از لحاظ بررسی‌های ICC-RT-PCR روش BT-PCR و Pellet و Grab sample تهیه و با روشنایی روشنایی در سرویس تیپ‌های RT-PCR و در هپ-2 و RD کشت داده شد. در مورد اعداد با ۱۲ روش مختلف حذف بازدارنده‌های آلتی موجود در فاضلاب RT-PCR مورد ارزیابی قرار گرفت.

واژگان کلیدی: انتروپیروروس‌ها، بازدارنده‌های آلتی فاضلاب، RT-PCR

مقدمه
انتروپیروروس‌های آسیایی به زیرگروه‌های پولیپیروروس (P. ana), کوکاکی و بروپیروس (سروبیپیروروس ۱ و ۲ و ۶) و بروپیروروس (سروبیپیروروس ۱ و ۲ و ۶) و انتروپیروروس‌های گروه جدید (ENV) محسوب می‌شوند. پولیپیروروس (P. ana) و بروپیروروس (S. spp) می‌توانند به‌طور پیش‌گیری برای پیشگیری از انتروپیروروس‌ها در فاضلاب راه‌اندازی یک روش حساس به منظور به‌کارگیری بیماری‌های عفونی انتروپیروروس در نمونه‌های فاضلاب مورد استفاده قرار گیرد. انتخاب یک روش حساس به منظور به‌کارگیری بیماری‌های عفونی انتروپیروروس در فاضلاب راه‌اندازی یک روش حساس به منظور به‌کارگیری بیماری‌های عفونی انتروپیروروس در فاضلاب مورد استفاده قرار گیرد.
جذب بازدارنده آلتی به منظور یافته‌اندازی انتروپروس در فاضلاب

یک مدل سلولی برای جذب جنید و بروز پایدار و انتروپروس‌های غیرپویلیزی برده‌سازی RD و Hep2 استفاده شد.

الگوریتم تنظیم فاضلاب به هر لطف کشت سلولی ۲۰۰ میکرولیتر فرد و ۷ بار تا B1 و مخلوط مصرفی آن سرم و ۵۰۰ میکرولیتر B6 از کوارسکی و ویروس و پویلیزی و ۲۰۰ میکرولیتر و ۷ بار تا بود و در هم کشیده شد. هر کشت سلولی تنظیم کرد.

مورف و بروز و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر CPE و در بررسی قرار گرفتن و پویلیزی و جذب پاکت استفاده از مکانیسم مصرفی از نظر نظیر CPE و در بررسی CPE نیز به راحتی در کشت سلولی استفاده می‌شود.

۴-۳ استفاده از تکنیک مولکولی برای تشخیص انتروپروس‌ها به ویژه انتروپروس‌های غیرقابل کشت باعث یک روش سریع و حساس مورد توجه بروز شناسانی در RT-PCR می‌شود. استفاده از RT-PCR به‌صورت مقدار ۲۲ سامانه می‌توان کمتر از انتروپروس را تشخیص داد. داده‌های حساس‌سازی بالای روش RT-PCR و حساسیت‌پذیری بیشتر بروز، درصد مورد اطمینان را به گراف و همکاران (۷) در سال ۱۳۶۴ و شیه، همکاران (۸) در سال ۱۳۶۴ و استرک (۹) در سال ۱۳۷۲ و رونالدز (۱۰) در سال ۱۳۷۳ و توژه (۱۱) در سال ۱۳۷۲ و شیه، همکاران (۱۲) در سال ۱۳۷۳ و استرک (۱۳) در سال ۱۳۹۶ و روشن‌آفرینی استفاده‌بازدارنده‌های آلتی موجود در فاضلاب PCR استفاده می‌شود. هدف از این روش قاری‌نگه‌شدن نمونه‌ی آلتی که توسط روش RT-PCR از این نمونه تشخیص مستقیم انتروپروس‌ها به وسیله می‌باشد.

مواد و روش‌ها

نمونه‌گیری و تغییری: با همکاری شرکت‌های آپ و فاضلاب شهر تهران ۳۰ نمونه از آزمایشگاه‌های مورد استفاده در PCR سنجش شد. نمونه‌ها از شرکت‌های شهر تهران (قبیطی، صاحیبی، زنجانی، اکبان، معلوی و شوش) با روش (Pellet) نتیجه‌گیری شدند تا نمونه در تغییری: با همکاری شرکت‌های آپ و فاضلاب شهر تهران ۳۰ نمونه از آزمایشگاه‌های مورد استفاده در PCR سنجش شد. نمونه‌ها از شرکت‌های شهر تهران (قبیطی، صاحیبی، زنجانی، اکبان، معلوی و شوش) با روش (Pellet) نتیجه‌گیری شدند. نمونه‌ها از شرکت‌های شهر تهران (قبیطی، صاحیبی، زنجانی، اکبان، معلوی و شوش) با روش (Pellet) نتیجه‌گیری شدند. نمونه‌ها از شرکت‌های شهر تهران (قبیطی، صاحیبی، زنجانی، اکبان، معلوی و شوش) با روش (Pellet) نتیجه‌گیری شدند. نمونه‌ها از شرکت‌های شهر تهران (قبیطی، صاحیبی، زنجانی، اکبان، معلوی و شوش) با روش (Pellet) نتیجه‌گیری شدند.

۲-۱۸/۱۸ مورد بررسی قرار گرفت.
۱۷ استخراج RNA با استفاده از TRIZOL. ۱۰۰ میکرولیتر از نمونه فاصله تغییر سری RNase (sorbent) و NSP-3 (داروی) و ۱۰۰ میکرولیتر از نمونه مایع رویی در فریز. رویی اضافه و سپس از جادو کیت کاراکتر (Merk) در مدت ۱۵ دقیقه در دور ۱۲۰۰ rpm حاصل با ۴۰۰ میکرولیتر اتانول/۷۰ نتیجه میدان مصرف. مدت مقطع استریل بر روی خشک شده اضافه گردید. مدت مقطع استریل بر روی خشک شده اضافه گردید.

۱۰۰ میکرولیتر از نمونه مایع رویی در هیدراژین (sorbent) و NSP-3 (داروی) بلافاصله بعد از جمع‌بندی و در مدت ۶۵ دقیقه (۲۴ ساعت) در دور ۵۰۰ rpm نتیجه میدان مصرف. در مدت ۱۵ دقیقه در دور ۱۲۰۰ rpm حاصل با ۴۰۰ میکرولیتر اتانول/۷۰ در مدت مقطع استریل بر روی خشک شده اضافه گردید.

۱۰۰ میکرولیتر از نمونه RNase (sorbent) و NSP-3 (داروی) در مدت ۱۵ دقیقه در دور ۱۲۰۰ rpm حاصل با ۴۰۰ میکرولیتر اتانول/۷۰ در مدت مقطع استریل بر روی خشک شده اضافه گردید.
جزوه بیانیه آنلاین بررسی رنگ‌بندیات مプリンوفاسیون در فاضلاب

پس از جداسازی مخصوص روی‌پین RNA با استفاده از کیت استخراج بیونیور (Bioneer)

: Integrated Cell Culture RT-PCR (ICC-RT-PCR) (روش (XII)

برای ایجاد خون، اینده روی سلول RD و Hep-2 و سلول‌های اندامیت از هر نمونه فاضلاب به چهار لوله کشت سلولی (شورک ۲ لوله) تلقیح گردید. در انتها نمونه‌گیری دو تن از مرحله گردید. در مرحله آخر به روش حاصل از میکروگلیک کیت مفرغ استر اضافه شد.

Sephadex و بیونیور (Bioneer)

استخراج RNA (VIII)

۲۰۰ میکروگلیک از نمونه تغییرهای فاضلاب با (PolyA+ V) و VB (در) ۴۰۰ میکروگلیک به فیلتر VB و در داخل جفت در دمای انثی قرار داده شد. به مرحله بعد در ۷۵۰ میکروگلیک از انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید.

سپس مخلوط با به پروتئینaze ۱۰۰ Bioneer (IX)

استخراج RNA (IX)

استخراج RNA (IX)

راهبرد های آزمایشگاهی مورد استفاده به منظور تشخیص اندامیت‌ها و پروتئینولوژی

امروز برای ۴،۵ میکروگلیک با استفاده از مخلوط RNA استخراج بیونیور (Bioneer)

برای ۴،۵ میکروگلیک با استفاده از مخلوط RNA استخراج Bioneer

بیانیه سه‌ش:w/۱۰۰ (۱۳۰/۵۱۵ میکروگلیک با استفاده از روش استخراج Bioneer

۲۰۰ میکروگلیک به ۲۰۰ میکروگلیک از نمونه تغییرهای فاضلاب با (PolyA+ V) و VB (در) ۴۰۰ میکروگلیک به فیلتر VB و در داخل جفت در دمای انثی قرار داده شد. به مرحله بعد در ۷۵۰ میکروگلیک از انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید. سپس به منظور حذف مزرد و مخلوط انواع ایزوپروپانول به محتوای لوله اضافه و مخلوط گردید.
در این پژوهش از آزمایشات سال 1381 تا این ماه سال 1383 از 6 نمونه خانه قبطیه، زرگند، صاحبقرانیه، اکباتن، شوشا و تامباک اوپون می‌باشد.
جدول 2- توسعه فراوانی مطلق و نسبی انترووپرسهای جدا شده در روش کشت سلولی بر روی رده های 2-RD, Hep-2

| جدول 3- مقایسه سه روش مختلف کشت سلولی RT-PCR ICC-RT-PCR Direct RT-PCR میزان نمونه در تکسیم و انتروپروس
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>الرقمه توصیفی</td>
<td>الرقمه توصیفی</td>
<td>الرقمه توصیفی</td>
<td>الرقمه توصیفی</td>
<td>الرقمه توصیفی</td>
<td>الرقمه توصیفی</td>
</tr>
<tr>
<td>Poliovirus</td>
<td>Enteroviruses</td>
<td>Poliovirus</td>
<td>Enteroviruses</td>
<td>Poliovirus</td>
<td>Enteroviruses</td>
</tr>
<tr>
<td>PI</td>
<td>E25</td>
<td>COX-B</td>
<td>E4</td>
<td>PIII</td>
<td>E6</td>
</tr>
<tr>
<td>E20</td>
<td>E13</td>
<td>E11</td>
<td>PI</td>
<td>A</td>
<td>E27</td>
</tr>
<tr>
<td>میزان نمونه</td>
<td>میزان نمونه</td>
<td>میزان نمونه</td>
<td>میزان نمونه</td>
<td>میزان نمونه</td>
<td>میزان نمونه</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
بحث

روش استاندارد کشت سلولی برای تهیه و استفاده از میکروپترسیون به‌صورت آسان برای اولین بار توسط Chomczynski (5) و همکارانش (4) توصیف شده است. این روش به‌طور گسترده‌ای در سایر روش‌ها و استانداردهای اصلی به‌کار می‌رود. با این حال، تاکنون پروتکلهای سرشار از موارد مختلف به‌طور گسترده‌ای در فیزیولوژی در حال استفاده می‌باشند. این موارد شامل روش‌های مختلف از جمله Chelex و Sephadex G-100 است. 

روش استاندارد کشت سلولی برای تهیه و استفاده از این روش بسیار ساده و به‌طور گسترده‌ای در سایر روش‌ها و استانداردهای اصلی به‌کار می‌رود. با این حال، تاکنون پروتکلهای سرشار از موارد مختلف به‌طور گسترده‌ای در فیزیولوژی در حال استفاده می‌باشند. این موارد شامل روش‌های مختلف از جمله Chelex و Sephadex G-100 است.

روش استاندارد کشت سلولی برای تهیه و استفاده از این روش بسیار ساده و به‌طور گسترده‌ای در سایر روش‌ها و استانداردهای اصلی به‌کار می‌رود. با این حال، تاکنون پروتکلهای سرشار از موارد مختلف به‌طور گسترده‌ای در فیزیولوژی در حال استفاده می‌باشند. این موارد شامل روش‌های مختلف از جمله Chelex و Sephadex G-100 است.

روش استاندارد کشت سلولی برای تهیه و استفاده از این روش بسیار ساده و به‌طور گسترده‌ای در سایر روش‌ها و استانداردهای اصلی به‌کار می‌رود. با این حال، تاکنون پروتکلهای سرشار از موارد مختلف به‌طور گسترده‌ای در فیزیولوژی در حال استفاده می‌باشند. این موارد شامل روش‌های مختلف از جمله Chelex و Sephadex G-100 است.

روش استاندارد کشت سلولی برای تهیه و استفاده از این روش بسیار ساده و به‌طور گسترده‌ای در سایر روش‌ها و استانداردهای اصلی به‌کار می‌رود. با این حال، تاکنون پروتکلهای سرشار از موارد مختلف به‌طور گسترده‌ای در فیزیولوژی در حال استفاده می‌باشند. این موارد شامل روش‌های مختلف از جمله Chelex و Sephadex G-100 است.
References


Downloaded from tmujiautmu.ac.ir at 10:37 +0430 on Thursday July 11th 2019


