[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 29, Issue 4 ( winter 2019) ::
MEDICAL SCIENCES 2019, 29(4): 275-283 Back to browse issues page
RNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers
Sohameh Mohebbi1 , Nahid Bakhtiari 2, Fahimeh Charbgoo3 , Zeinab Shirvani-Farsani4
1- Department of Biotechnology, Ale-Taha Institute of Higher Education, Tehran, Iran
2- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran , nbakhtiari@irost.org
3- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
4- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
Abstract:   (3106 Views)
Nucleic acids play different roles besides storing information and proteins coding. For example, single-stranded nucleic acids can fold into complicated structures with capability of molecular detection, catalyzing bioreactions and therapy. The development of RNA-based therapies has been rapidly progressed in the recent years. RNA aptamers are biomolecules with a size of 10 to 50 nm that can be useful for targeted therapy and systemic release of therapeutics into the desired tissues. Aptamers can be linked to other RNA drugs and form a biohybrid RNA nanostructure. The chemical nature of the aptamers makes them attractive therapeutic agents compared to other small molecules and antibodies. In this review, we discuss different approaches related to drug targeting and release by RNA aptamers, since the importance of the aptamer-based nano-medicine is now well demonstrated and this field become a promising platform in the treatment of diseases.
Keywords: Aptamer, RNA-based therapies, Nano-medicine, Nanoparticles.
Keywords: Aptamer, RNA-based therapies, Nano-medicine, Nanoparticles.
Full-Text [PDF 533 kb]   (2542 Downloads)    
Semi-pilot: Review | Subject: Nanobiotechnology
Received: 2018/08/27 | Accepted: 2018/11/13 | Published: 2019/12/28
References
1. Hicke BJ, Stephens AW. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest 2000; 106:923-28. [DOI:10.1172/JCI11324] [PMID] [PMCID]
2. Paris G, Kraszewski S, Ramseyer C, Enescu M. About the structural role of disulfide bridges in serum albumins: evidence from protein simulated unfolding. Biopolymers 2012; 97: 889-98. [DOI:10.1002/bip.22096] [PMID]
3. Govindarajan S, Goldstein R. On the thermodynamic hypothesis of protein folding. Proc Natl Acad Sci USA 1998; 95:5545-49. [DOI:10.1073/pnas.95.10.5545] [PMID] [PMCID]
4. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. 1990; Nature 346:818-22. [DOI:10.1038/346818a0] [PMID]
5. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249:505-10. [DOI:10.1126/science.2200121] [PMID]
6. Lakhin AV, Tarantul VZ, Gening LV. Aptamers: problems, solutions and prospects. Acta Naturae 2013; 5: 34-43. [DOI:10.32607/20758251-2013-5-4-34-43] [PMID] [PMCID]
7. Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 2016;85:32-45. [DOI:10.1016/j.bios.2016.04.091] [PMID]
8. Majumder P, Gomes KN, Ulrich H. Aptamers: from bench side research towards patented molecules with therapeutic applications. Expert Opin Ther Pat 2009;19:1603-13. [DOI:10.1517/13543770903313746] [PMID]
9. Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nature Rev Chem 2017;10: 0076. [DOI:10.1038/s41570-017-0076]
10. Sun W, Du L, Li M. Advances and perspectives in cell-specific aptamers. Curr Pharm Des 2011;17:80-91. [DOI:10.2174/138161211795049769] [PMID]
11. Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. Silence 2010;1:4. [DOI:10.1186/1758-907X-1-4] [PMID] [PMCID]
12. Klussmann S, ed. The aptamer handbook: functional oligonucleotides and their applications. Germany: Wiley; 2006. [DOI:10.1002/3527608192]
13. Rossi JJ. RNA nanoparticles come of age. Acta Biochim Biophys Sin 2011;43:245-47. [DOI:10.1093/abbs/gmr018] [PMID] [PMCID]
14. Guo P, Coban O, Snead NM. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 2010;62:650-66. [DOI:10.1016/j.addr.2010.03.008] [PMID] [PMCID]
15. Zhou J, Rossi JJ. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 2011;21:1-10. [DOI:10.1089/oli.2010.0264] [PMID] [PMCID]
16. Song E, Zhu P, Lee SK. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005.23:709-717. [DOI:10.1038/nbt1101] [PMID]
17. Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 2017; 57:61-79. [DOI:10.1146/annurev-pharmtox-010716-104558] [PMID] [PMCID]
18. Chu TC, Twu KY, Ellington AD. Aptamer mediated siRNA delivery. Nucleic Acids Res 2006; 34:e73 [DOI:10.1093/nar/gkl388] [PMID] [PMCID]
19. McNamara JO 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24:1005-15. [DOI:10.1038/nbt1223] [PMID]
20. Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S. Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets 2008; 8:554-65. [DOI:10.2174/156800908786241078] [PMID]
21. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 2009; 27:839-49. [DOI:10.1038/nbt.1560] [PMID] [PMCID]
22. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008;105:17356-61. [DOI:10.1073/pnas.0809154105] [PMID] [PMCID]
23. Charbgoo F, Behmanesh M, Nikkhah M, Kane EG. RNAi mediated gene silencing of ITPA using a targeted nanocarrier: apoptosis induction in SKBR3 cancer cells, Clin Exper Pharmacol Physiol 2017;44: 24-31. [DOI:10.1111/1440-1681.12776] [PMID]
24. Mohebbi S, Behmanesh M, Nikkhah M, Tohidi Moghadam T. Apoptosis induction in glioma cells by downregulation of HIF-1α gene. JMBS 2017; 9:103-10. [In Persian]
25. Bakhtiari N, Safavi SM, Hoseinipajouh KH. Cytotoxic effects of Clusterin antisense oligonucleotides and Docetaxel on two prostate cancer cell lines. JQUMS. 2015;19: 4-10. [In Persian]
26. Bakhtiari N, Mirshahi M, Babaeipour V, Maghsoudi N. Inhibition of ackA and pta genes using two specific antisense RNAs reduced acetate accumulation in batch fermentation of E.coli BL21(DE3). Iranian J Biotechnol 2010; 8: 243-51.
27. Guo P. The emerging field of RNA nanotechnology. Nat Nanotechnol 2010;5:833-42. [DOI:10.1038/nnano.2010.231] [PMID] [PMCID]
28. 28 Zhou J, Bobbin ML, Burnett JG, Rossi JJ. Current progress of RNA aptamer-based therapeutics. Front Genet. 2012;3:234. [DOI:10.3389/fgene.2012.00234]
29. Anilkumar G, Rajasekaran SA, Wang S, Hankinson O, Bander NH, Rajasekaran AK. Prostate-specific membrane antigen association with filamin A modulates its internalization and NAALADase activity. Cancer Res 2003; 63:2645-48.
30. Markovic I, Clouse KA. Recent advances in understanding the molecular mechanisms of HIV-1 entry and fusion: revisiting current targets and considering new options for therapeutic intervention. Curr HIV Res 2004; 2:223-34. [DOI:10.2174/1570162043351327] [PMID]
31. Wilen CB, Tilton JC, Doms RW. Molecular mechanisms of HIV entry. Adv Exp Med Biol 2012;726:223-42. [DOI:10.1007/978-1-4614-0980-9_10] [PMID]
32. Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 2008;16:1481-89. [DOI:10.1038/mt.2008.92] [PMID] [PMCID]
33. Zhou J, Swiderski P, Li H, Zhang J, Neff CP, Akkina R, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 2009;37:3094-109. [DOI:10.1093/nar/gkp185] [PMID] [PMCID]
34. 34 Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X, Stockdale KR, Rothman AM, et al. Delivery of chemo-sensitizing siRNAs to HER2 + _breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012; 40:6319-37. [DOI:10.1093/nar/gks294] [PMID] [PMCID]
35. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2012;9:16-32. [DOI:10.1038/nrclinonc.2011.177] [PMID]
36. Liu W, Bulgaru A, Haigentz M, Stein CA, Perez-Soler R, Mani S. The BCL2-family of protein ligands as cancer drugs: the next generation of therapeutics. Curr Med Chem Anticancer Agents 2003;3:217-223. [DOI:10.2174/1568011033482459] [PMID]
37. Kotula JW, Pratico ED, Ming X , Nakagawa O, Juliano RL, Sullenger BA. Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 2012;22:187-195. [DOI:10.1089/nat.2012.0347] [PMID] [PMCID]
38. Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides 2009;19:1-13. [DOI:10.1089/oli.2008.0161] [PMID] [PMCID]
39. Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D, et al. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol 2009;76:984-91. [DOI:10.1124/mol.109.055947] [PMID] [PMCID]
40. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med 2005;56:555-83. [DOI:10.1146/annurev.med.56.062904.144915] [PMID]
41. Caruthers MH. The chemical synthesis of DNA/RNA - our gift to science. J Biol Chem 2012;288:1420-27. [DOI:10.1074/jbc.X112.442855] [PMID] [PMCID]
42. Nguyen J, Szoka FC. Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 2012; 45:1153-62. [DOI:10.1021/ar3000162] [PMID] [PMCID]
43. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997;77:759-803. [DOI:10.1152/physrev.1997.77.3.759] [PMID]
44. Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 2010;267:9-21. [DOI:10.1111/j.1365-2796.2009.02189.x] [PMID] [PMCID]
45. Thiel KW, Giangrande PH. Intracellular delivery of RNA-based therapeutics using aptamers. Ther Deliv 2010;1:849-61. [DOI:10.4155/tde.10.61] [PMID] [PMCID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebbi S, Bakhtiari N, Charbgoo F, Shirvani-Farsani Z. RNA nanotechnology breakthrough for targeted release of RNA-based drugs using cell-based aptamers. MEDICAL SCIENCES 2019; 29 (4) :275-283
URL: http://tmuj.iautmu.ac.ir/article-1-1681-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 4 ( winter 2019) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4645