[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 2 (summer 2024) ::
MEDICAL SCIENCES 2024, 34(2): 129-139 Back to browse issues page
The effect of p-cymene in amelioration of catalepsy Behavior, memory recovery and hippocampus cell damage in an animal model of Parkinson's disease
Milad Ansari1 , Mohammad Amin Edalatmanesh 2
1- MSc Candidate in Animal Physiology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2- Associate Professor of Physiology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran , amin.edalatmanesh@gmail.com
Abstract:   (573 Views)
Background: Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive damage of dopaminergic neurons in the substantia nigra and reduction of dopamine in the striatum. Several studies have shown that oxidative stress plays an important role in the pathophysiology of PD, and antioxidant agents can be useful in reducing the rate of neurodegeneration. This study aimed to evaluate the antioxidant and neuroprotective effect of p-Cymene in the reserpine-induced (RES) PD rat model.
Materials and methods: 40 male Wistar rats were divided into 5 groups, including control, receiving vehicle of p-Cymene + receiving vehicle of reserpine (VP+VR), receiving reserpine (1 mg/5 days/intraperitoneal) + vehicle of p-Cymene (RES+VP), receiving p-Cymene (50 mg/14 days/oral) + vehicle of reserpine (p-Cymene+VR) and receiving reserpine+p-Cymene (RES+p-Cymene) were divided. After the treatment, the animals were subjected to behavioral evaluation (catalepsy test and shuttle box test). At the end, the level of hippocampal catalase (CAT), superoxide dismutase (SOD) by ELISA and malondialdehyde (MDA) by thiobarbituric acid method and the density of apoptotic neurons in different areas of the hippocampus were measured.
Results: The results showed a significant reduction in catalepsy behavior, amelioration of avoidance memory, a significant increase in CAT and SOD, and a decrease in MDA in the RES+p-Cymene group compared to the p-Cymene+VR group. On the other hand, p-Cymene prevented the increase in the density of apoptotic neurons caused by RES in the CA1 and CA3 regions of the hippocampus.
Conclusion: In general, the results showed that p-cymene had a protective effect in the PD model and prevented motor-cognitive disorders and neuronal damage caused by RES.
 
Keywords: Reserpine, Parkinson's disease, Monoterpene, Catalepsy
Full-Text [PDF 2853 kb]   (195 Downloads)    
Semi-pilot: Experimental | Subject: Physiology
Received: 2023/09/20 | Accepted: 2023/11/12 | Published: 2024/06/30
References
1. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol 2021;20:385-97. [DOI:10.1016/S1474-4422(21)00030-2]
2. Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm (Vienna) 2017;124:901-905. [DOI:10.1007/s00702-017-1686-y]
3. Church FC. Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease. Biomolecules 2021;11:612. [DOI:10.3390/biom11040612]
4. Reich SG, Savitt JM. Parkinson's Disease. Med Clin North Am 2019;103:337-350. [DOI:10.1016/j.mcna.2018.10.014]
5. Beitz JM. Parkinson's disease: a review. Front Biosci (Schol Ed) 2014;6:65-74. [DOI:10.2741/S415]
6. Hayes MT. Parkinson's Disease and Parkinsonism. Am J Med 2019;132:802-807. [DOI:10.1016/j.amjmed.2019.03.001]
7. Radhakrishnan DM, Goyal V. Parkinson's disease: A review. Neurol India 2018;66:S26-35. [DOI:10.4103/0028-3886.226451]
8. Leão AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson's Disease: New Perspectives to a Long-Standing Model. Brain Pathol 2015;25:377-90. [DOI:10.1111/bpa.12253]
9. Dehsheikh AB, Sourestani MM, Dehsheikh PB, Mottaghipisheh J, Vitalini S, Iriti M. Monoterpenes: Essential Oil Components with Valuable Features. Mini Rev Med Chem 2020;20:958-74. [DOI:10.2174/1389557520666200122144703]
10. Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, et al. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol 2021;153:112259. [DOI:10.1016/j.fct.2021.112259]
11. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 2013;106-107:17-32. [DOI:10.1016/j.pneurobio.2013.04.004]
12. Rekha KR, Inmozhi Sivakamasundari R. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Neurochem Res 2018;43:1947-62. [DOI:10.1007/s11064-018-2617-5]
13. Lins LCRF, Souza MF, Bispo JMM, Gois AM, Melo TCS, Andrade RAS, et al. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine. Brain Res Bull 2018;139:9-15. [DOI:10.1016/j.brainresbull.2018.01.017]
14. Seifi-Nahavandi B, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. Cymene consumption and physical activity effect in Alzheimer's disease model: an in vivo and in vitro study. J Diabetes Metab Disord 2020;19:1381-89. [DOI:10.1007/s40200-020-00658-2]
15. Bricker B, Sampson D, Ablordeppey SY. Evaluation of the potential of antipsychotic agents to induce catalepsy in rats: assessment of a new, commercially available, semi-automated instrument. Pharmacol Biochem Behav 2014;120:109-16. [DOI:10.1016/j.pbb.2014.02.013]
16. Edalatmanesh MA, Hosseini M, Ghasemi S, Golestani S, Sadeghnia HR, Mousavi SM, et al. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir J Med Sci 2016;185:75-84. [DOI:10.1007/s11845-014-1224-y]
17. Abutalebi Ardakani Z, Edalatmanesh MA. The effect of coenzyme-Q10 on neuroinflammation and hippocampal cell damage in a model of monosodium glutamate induced excitotoxicity. Pars Journal of Medical Sciences. 2022; 19: 45-54. [In Persian]
18. Roshanfekr H, Edalatmanesh M A, Aghababa H. The effect of gallic acid on oxidative stress parameters and hippocampal cell density in ischemia-renal reperfusion model. Medical Sciences 2022; 32 :379-388. [In Persian] [DOI:10.52547/iau.32.4.379]
19. Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson's disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol 2022;13:944376. [DOI:10.3389/fphar.2022.944376]
20. Ribeiro AM, Silva RH, Santos JR. Testosterone propionate improves motor alterations and dopaminergic damage in the reserpine-induced progressive model of Parkinson's disease. Brain Res Bull 2022;187:162-168. [DOI:10.1016/j.brainresbull.2022.06.018]
21. Lima AC, Meurer YSR, Bioni VS, Cunha DMG, Gonçalves N, Lopes-Silva LB, et al. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson's Disease. Front Aging Neurosci 2021;13:757714. [DOI:10.3389/fnagi.2021.757714]
22. Crippa JA, Vânia D, Silva RH, Abílio VC. Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats. Front Pharmacol 2016;7:343. [DOI:10.3389/fphar.2016.00343]
23. Changes in the mesocorticolimbic pathway after low dose reserpine-treatment in Wistar and Spontaneously Hypertensive Rats (SHR): Implications for cognitive deficits in a progressive animal model for Parkinson's disease. Behav Brain Res 2021;410:113349. [DOI:10.1016/j.bbr.2021.113349]
24. Waku I, Magalhães MS, Alves CO, de Oliveira AR. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur J Neurosci 2021;53:3743-3767. [DOI:10.1111/ejn.15222]
25. de Santana MF, Guimarães AG, Chaves DO, Silva JC, Bonjardim LR, de Lucca Júnior W, et al. The anti-hyperalgesic and anti-inflammatory profiles of p-cymene: Evidence for the involvement of opioid system and cytokines. Pharm Biol 2015;53:1583-90. [DOI:10.3109/13880209.2014.993040]
26. Rahman MM, Chakraborti RR, Potol MA, Abir AH, Sharmin O, Alam M, et al. Epalrestat improves motor symptoms by reducing oxidative stress and inflammation in the reserpine induced mouse model of Parkinson's disease. Animal Model Exp Med 2019;3:9-21. [DOI:10.1002/ame2.12097]
27. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A 2016;113:14835-14840. [DOI:10.1073/pnas.1616515114]
28. Leão AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson's Disease: New Perspectives to a Long-Standing Model. Brain Pathol 2015;25:377-90. [DOI:10.1111/bpa.12253]
29. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell 2019;18:e13031. [DOI:10.1111/acel.13031]
30. Santos-Lobato BL, Vidal AF, Ribeiro-Dos-Santos Â. Regulatory miRNA-mRNA Networks in Parkinson's Disease. Cells 2021;10:1410. [DOI:10.3390/cells10061410]
31. Cao XL, Sparling M, Dabeka R. p-Cymene, a natural antioxidant, in Canadian total diet foods: occurrence and dietary exposures. J Sci Food Agric 2019;99:5606-609. [DOI:10.1002/jsfa.9854]
32. de Oliveira TM, de Carvalho RB, da Costa IH, de Oliveira GA, de Souza AA, de Lima SG, de Freitas RM. Evaluation of p-cymene, a natural antioxidant. Pharm Biol 2015;53:423-8. [DOI:10.3109/13880209.2014.923003]
33. Arabloei Sani M, Yaghmaei P, Hajebrahimi Z, Hayati Roodbari N. Therapeutic Effect of P-Cymene on Lipid Profile, Liver Enzyme, and Akt/Mtor Pathway in Streptozotocin-Induced Diabetes Mellitus in Wistar Rats. J Obes 2022;2022:1015669. [DOI:10.1155/2022/1015669]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ansari M, Edalatmanesh M A. The effect of p-cymene in amelioration of catalepsy Behavior, memory recovery and hippocampus cell damage in an animal model of Parkinson's disease. MEDICAL SCIENCES 2024; 34 (2) :129-139
URL: http://tmuj.iautmu.ac.ir/article-1-2146-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 2 (summer 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4660