:: Volume 29, Issue 2 (Summer 2019) ::
MEDICAL SCIENCES 2019, 29(2): 131-140 Back to browse issues page
The effect of antibacterial synergism of silver nanoparticles with extract of Urtica dioica and Allium hirtifolum against multidrug resistant klebsiella (MDR) isolated from ICU patients
Mahsa Dadgar , Akram Sadat Tabatabaee Bafroee 1, Sara Minaeian2
1- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran , akram_tabatabaee@yahoo.com
2- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (3830 Views)
Background: Because most bacteria responsible for hospital infections are resistant to common antibiotics, the tendency to produce effective and nontoxic anti-microbial drugs have increased. Therefore, it is attempted to substitute antibiotics with natural products, such as nanoparticles and plant extracts. The aim of this study was to investigate the synergistic antibacterial effects of silver nanoparticles with extracts of nettle and shallot plants against multi drug resistant (MDR) kebsiella.
Materials and methods: Of 360 clinical samples, 112 kebsiella were isolated from ICU hospitalized patients. The klebsiella isolates were identified by biochemical tests. The antibiotic susceptibility of isolates was determined using disc diffusion method. Minimum inhibitory concentration of silver nanoparticles, nettle and shallot extracts against resistant isolates was assessed by broth microdilution method and their synergitic effects were determined using checkerboard method. Also the fractional inhibition concentration (FIC) was calculated.
Results: The silver nanoparticles were more effective than plant extracts against MDR isolates. The use of silver nanoparticles and shallot extract together led to synergistic effect on both MDR klebsiella isolate and Klebsiella pneumoniae ATCC 1290. In addition, the use of the silver nanoparticles and nettel extract led to synergistic effect on MDR isolate of klebsiella and additive effect ATCC isolate.
Conclusion: Due to good antibacterial effect of AgNPs, shallot and nettle extracts on resistant klebsiella isolates and their affordable production, they can be exploited in addition to antibiotic treatments.
Keywords: Silver nanoparticles, Shallot extract, Nettle extract, Klebsiella, MDR.
Keywords: Silver nanoparticles, Shallot extract, Nettle extract, Klebsiella, MDR.
Full-Text [PDF 717 kb]   (2981 Downloads)    
Semi-pilot: Experimental | Subject: Molecular Biology
Received: 2018/05/30 | Accepted: 2019/01/13 | Published: 2019/06/16
References
1. Devrajani B, Shah S, Devrajani T, Qureshi GA. Nosocomial infections in medical ward (Four months descriptive study in a tertiary care hospital). World J Med Sci 2009;4:13-7.
2. Nejad SB, Allegranzi B, Syed SB, Ellis B, Pittet D. Health-care-associated infection in Africa: a systematic review. Bull World Health Organ 2011;89:757-65. [DOI:10.2471/BLT.11.088179] [PMID] [PMCID]
3. Bearman GM, Munro C, Sessler CN, Wenzel RP, editors. Infection control and the prevention of nosocomial infections in the intensive care unit. Seminars in respiratory and critical care medicine. New York: Thieme Medical Publishers; 2006. [DOI:10.1055/s-2006-945534] [PMID]
4. Fridkin SK, Welbel SF, Weinstein RA. Magnitude and prevention of nosocomial infections in the intensive care unit. Infect Dis Clin North Am 1997;11:479-96. [DOI:10.1016/S0891-5520(05)70366-4]
5. Soltan Dalal MM, Miremadi SA, Sharify Yazdi MK, Rastegar Lari A, Rajabi Z, Avadis Yans S. Antimicrobial resistance trends of Klebsiella spp. isolated from patients in Imam Khomeini Hospital. Journal of Payavard Salamat 2012;6:275-81. [In Persian]
6. Kumar V, Sun P, Vamathevan J, Li Y, Ingraham K, Palmer L, et al. Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother 2011;55:4267-76. [DOI:10.1128/AAC.00052-11] [PMID] [PMCID]
7. Murray PR, Rosenthal KS, Pfaller MA, editors. Medical microbiology. New York: Elsevier Health Sciences; 2015.
8. Immanuel G, Vincybai V, Sivaram V, Palavesam A, Marian MP. Effect of butanolic extracts from terrestrial herbs and seaweeds on the survival, growth and pathogen (Vibrio parahaemolyticus) load on shrimp Penaeus indicus juveniles. Aquaculture 2004;236:53-65. [DOI:10.1016/j.aquaculture.2003.11.033]
9. Seidler RJ, Knittel MD, Brown C. Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol 1975;29:819-25.
10. Rios J, Recio M. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005;100:80-4. [DOI:10.1016/j.jep.2005.04.025] [PMID]
11. Avato P, Tursi F, Vitali C, Miccolis V, Candido V. Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine 2000;7:239-43. [DOI:10.1016/S0944-7113(00)80010-0]
12. Mahmoudi M, Ebrahimzadeh M, Pourmorad F, Yasini S. Antinociception and locomotor impairment induction by methanolic extract of Urtica dioica. International Journal of Biology and Biotechnology 2007;4:181-85.
13. Kvistek L, Prucek R. The preparation and application of silver nanoparticles. J Mater Sci 2005;22:2461-73.
14. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J colloid Interface Sci 2004;275:177-82. [DOI:10.1016/j.jcis.2004.02.012] [PMID]
15. Majd,A. Mehrabian,S and Jajary,Z. The study of antimicrobial effects of urtica dioica extract. Medicinal and Aromatic plants Res 2003; 19: 287-293. [In Persian]
16. Abdeltawab AA, Ullah Z, Al-Othman AM, Ullah R, Hussain I, Ahmad S, et al. Evaluation of the chemical composition and element analysis of Urtica dioca. Afr J Pharm Pharmacol 2012;6:1555-8. [DOI:10.5897/AJPP12.268]
17. Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 2011;162:542-9. [DOI:10.1016/j.resmic.2011.04.009] [PMID]
18. Stark WJ. Nanoparticles in biological systems. Angew Chem Int Ed Engl 2011;50:1242-58. [DOI:10.1002/anie.200906684] [PMID]
19. Kumar S, Singh M, Halder D, Mitra A. Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids. Colloids Surf A 2014;449:82-6. [DOI:10.1016/j.colsurfa.2014.02.027]
20. Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 2010;12:1531-51. [DOI:10.1007/s11051-010-9900-y]
21. Najjar MB, Kashtanov D, Chikindas ML. Natural antimicrobials ε-poly-l-lysine and Nisin A for control of oral microflora. Probiotics Antimicrob Proteins 2009;1:143. [DOI:10.1007/s12602-009-9020-0] [PMID]
22. Stamdards A. Performance standards for antimicrobial susceptibility testing. CLSI 2010:M100-S20.
23. Landage S, Wasif A, Dhuppe P. Synthesis of nanosilver using chemical reduction methods. IJAREAS 2014;3:14-22.
24. Heydari MA, Mobini M, Salehi M. The synergic activity of eucalyptus leaf oil and silver nanoparticles against some pathogenic bacteria. Arch Pediatr Infect Dis 2017;5:e61654.
25. Lorian V, editor. Antibiotics in laboratory medicine. New York: Lippincott Williams & Wilkins; 2005.
26. Oroojalian F, Orafaee H, Azizi M. Synergistic antibaterial activity of medicinal plants essential oils with biogenic silver nanoparticles. Nanomedicine Journal 2017;4:237-44.
27. Oroojalian F, Kasra-Kermanshahi R, Azizi M, Bassami MR. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem 2010;120:765-70. [DOI:10.1016/j.foodchem.2009.11.008]
28. Romano CS, Abadi K, Repetto V, Vojnov AA, Moreno S. Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem 2009;115:456-61. [DOI:10.1016/j.foodchem.2008.12.029]
29. NNIS System. National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2003, issued August 2003. Am J Infect Control 2003;31:481. [DOI:10.1016/j.ajic.2003.09.002] [PMID]
30. Barak M, Mamishi S, Siadati SA, Salamati P, Khotaii G, Mirzarahimi M. Risk factors and bacterial etiologies of nosocomial infections in NICU and PICU wards of children's medical center and Bahrami Hospitals during 2008-2009. J Ardabil Univ Med Sci 2011;11:113-20. [In Persian]
31. Hazvini K, Rashed T, Boskabadi H, Yazdan Panah M, Khakzadan F, Safaee H, et al. Neonatal intensive care unit nosocomial bacterial infections. Tehran Univ Med J 2008; 66 :349-54. [In Persian]
32. Shojaei S, Rahimi T, Amini M, Shams S. Survey of Nosocomial Infections in Patients Admitted to Nekoei Hospital of Qom City in 2012, Iran. Qom Univ Med Sci J 2015; 9 :64-73. [In Persian]
33. Mehmood Z, Ahmad S, Mohammad F. Antifungal activity of some essential oils and their major constituents. Indian J Nat Prod 1997;13:10-3.
34. Roshani M, Heidary M, Goudarzi H, Hashemi A, Eslami G, Yousefi N. Investigating the antibacterial effect of methanoland acetone extracts of Urtica dioica and Zataria multifloraagainst metallo beta-lactamase producing Pseudomonas aeruginosa. JIUMS 2016;24:70-8. [In Persian] [DOI:10.18869/acadpub.sjimu.24.3.70]
35. Taran M, Rezaeian M, Izaddoost M. In vitro antitrichomonas activity of Allium hirtifloium (Persian Shallot) in comparison with metronidazole. Iran J Public Health 2006;35:92-4.
36. Rai M, Deshmukh S, Ingle A, Gade A. Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. J Appl Microbiol 2012;112:841-52. [DOI:10.1111/j.1365-2672.2012.05253.x] [PMID]
37. Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 2006;1:441. [DOI:10.2147/nano.2006.1.4.441] [PMID] [PMCID]
38. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176:1-12. [DOI:10.1016/j.toxlet.2007.10.004] [PMID]
39. Malarkodi C, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Vanaja M, Annadurai G. Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Adv Nano Res 2013;1:83-91. [DOI:10.12989/anr.2013.1.2.083]
40. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012;30:499-511. [DOI:10.1016/j.tibtech.2012.06.004] [PMID]
41. Amin M, Kapadnis B. Heat stable antimicrobial activity of Allium ascalonicum against bacteria and fungi. Indian J Exp Biol 2005;43:751-54.
42. Mnayer D, Fabiano-Tixier AS, Petitcolas E, Hamieh T, Nehme N, Ferrant C, et al. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014;19:20034-53. [DOI:10.3390/molecules191220034] [PMID] [PMCID]
43. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules 2015;20:8856-74. [DOI:10.3390/molecules20058856] [PMID] [PMCID]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 2 (Summer 2019) Back to browse issues page