[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 29, Issue 2 (Summer 2019) ::
MEDICAL SCIENCES 2019, 29(2): 155-162 Back to browse issues page
The investigation of miR-499 in apoptosis of cardiomyocytes in blood serum of MI patients
Hesam Hasanzadeh1 , Changiz Ahmadizadeh * 2, Abolfazl Ghorbani3
1- MSc, Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
2- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran , ch-ahmadizadeh@iau-ahar.ac.ir
3- Department of Genetics, Shabestar Branch, Islamic Azad University, Shabestar, Iran
Abstract:   (272 Views)
Background: Ischemic heart diseases (IHD) cause most deaths worldwide in a way that they are the cause of more than 30 percent of the deaths. After the discovery of miRNA in 1990 and the discovery of more than 2500 types of miRNA, gradually the importance of these mechanism regulators and molecular signals and gene routes were identified in the processes and the cellular mechanisms, especially in cardiovascular system. The goal of this research was to investigate miR-499 dominating the apoptosis of heart cellules in serums of the patients with MI (myocardial infarction).
Materials and methods: In this case-control study, miR-499 were investigated by real time PCR among 70 MI patients in Shahid Madani Hospital in Tabriz in 2017 and the data were compared with healthy persons. The statistical analyses were carried out using SPSS (version19) by t-test method. P<0.05 were considered as significant.
Results: The expression levels of miR-499 significantly increased among MI patients compared to control group (P=0.007). The miR-499 expression has no significant difference between overweight and normal weight people (P=0.06).
Conclusion: The present study showed that the expression of miR-499 among individuals suffering from MI has been greater than healthy people and it can be utilized as a diagnostic and also prognostic factor of MI patients.
Keywords: Acute myocardial infarction, Apoptosis, miR-499.
Keywords: Acute myocardial infarction, Apoptosis, miR-499.
Full-Text [PDF 878 kb]   (127 Downloads)    
Semi-pilot: case-control | Subject: Microbiology
Received: 2018/09/8 | Accepted: 2018/11/27 | Published: 2019/06/18
References
1. Last J, Cummigs S. One year survival in acute myocardial infarction. Lancet 1993;341:72-5.
2. Antman EM, Braunwald E. Acute myocardial infarction. In: Braunwald E, ed. Heart diseases. 5th ed. philadelphia: WB Saunders; 1997. P.1184-288.
3. McMechan SR, Jennifer Adgey AA. Age related outcome of acute myocardial infarction. BMJ 1998;317:1334-5. [DOI:10.1136/bmj.317.7169.1334] [PMID] [PMCID]
4. Peltonen M, Lundberg V, Huhtasaari F, Asplund K. Marked improvement in survival after acute myocardial infarction in middle-aged men but not in women. The Northern Sweden MONICA study 1985-94. J Intern Med 2000;247:579-87. [DOI:10.1046/j.1365-2796.2000.00644.x] [PMID]
5. Verderose J. Coronary Heart Disease, Nutrition management for older Adults, monograph on the internet. New York: American Heart Association; 2001.
6. World Health Organization. Technical report series 894. Obesity, preventing and managing the global epidemic, Report of a WHO consultation. Geneva: World Health Organization; 2000.
7. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kotteke TE, et al. Explaining the Decrease in US Deaths from Coronary Disease,1980-2000. N Engl J Med 2007;356:2388-98. [DOI:10.1056/NEJMsa053935] [PMID]
8. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med 2009;60:167-79. [DOI:10.1146/annurev.med.59.053006.104707] [PMID]
9. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011;39:D152-7. [DOI:10.1093/nar/gkq1027] [PMID] [PMCID]
10. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105. [DOI:10.1101/gr.082701.108] [PMID] [PMCID]
11. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9. [DOI:10.1038/nature01957] [PMID]
12. Williams AH, Liu N, van Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol 2009;21:461-9. [DOI:10.1016/j.ceb.2009.01.029] [PMID] [PMCID]
13. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66. [DOI:10.1038/nrc1997] [PMID]
14. Esau CC, Monia BP. Therapeutic potential for microRNAs. Adv Drug Deliv Rev 2007;59:101-14. [DOI:10.1016/j.addr.2007.03.007] [PMID]
15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 2001;25:402-8. [DOI:10.1006/meth.2001.1262] [PMID]
16. Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One 2014;29:e85805. [DOI:10.1371/journal.pone.0085805] [PMID] [PMCID]
17. Hood WB Jr, Joison J, Kumar R, Katayama I, Neiman RS, Norman JC. Experimental myocardial infarction. I. Production of left ventricular failure by gradual coronary occlusion in intact conscious dogs. Cardiovasc Res 2017;4:73-83. [DOI:10.1093/cvr/4.1.73] [PMID]
18. Martin SS, Khokhar AA, May HT, Kulkarni KR, Blaha MJ, Joshi PH, et al. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the Lipoprotein Investigators Collaborative. Eur Heart J 2014;36:22-30. [DOI:10.1093/eurheartj/ehu264] [PMID] [PMCID]
19. Ludwig A, Lucero-Obusan C, Schirmer P, Winston C, Holodniy M. Acute cardiac injury events≤ 30 days after laboratory-confirmed influenza virus infection among U.S. veterans, 2010-2012. BMC Cardiovasc Disord 2015;15:109. [DOI:10.1186/s12872-015-0095-0] [PMID] [PMCID]
20. Mair J, Jaffe A, Apple F, Lindahl B. Cardiac biomarkers. Dis Markers 2015;2015:370569. [DOI:10.1155/2015/370569] [PMID] [PMCID]
21. Shah ASV, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ 2015;350:h626. [DOI:10.1136/bmj.h626] [PMID] [PMCID]
22. Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G, et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 2013;167:531-6. [DOI:10.1016/j.ijcard.2012.01.075] [PMID]
23. Li C, Fang Z, Jiang T, Zhang Q, Liu C, Zhang C, et al. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genomics 2013;6:16. [DOI:10.1186/1755-8794-6-16] [PMID] [PMCID]
24. Xiao J, Shen B, Li J, Lv D, Zhao Y, Wang F, et al. Serum microRNA-499 and microRNA-208a as biomarkers of acute myocardial infarction. Int J Clin Exp Med 2014;7:136.
25. Li Y, Lu J, Bao X, Wang X, Wu J, Li X, et al. MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4. Oncotarget 2016;7:35607-17. [DOI:10.18632/oncotarget.9597] [PMID] [PMCID]
26. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009;7:147-54. [DOI:10.1016/S1672-0229(08)60044-3]
27. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 2009;10:295. [DOI:10.1186/1471-2105-10-295] [PMID] [PMCID]
28. Van Rooij E, Quiat D, Johnson BA, Sutherland L B, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009;17:662-73. [DOI:10.1016/j.devcel.2009.10.013] [PMID] [PMCID]
29. Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 2000;86:386-90. [DOI:10.1161/01.RES.86.4.386] [PMID]
30. Weiner RB, Baggish AL. Exercise-induced cardiac remodeling. Prog Cardiovasc Dis 2012;54:380-6. [DOI:10.1016/j.pcad.2012.01.006] [PMID]
31. Gustafson TA, Markham BE, Morkin E. Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: Measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 1986;59:194-201. [DOI:10.1161/01.RES.59.2.194] [PMID]
32. Van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress dependent cardiac growth and gene expression by a microRNA. Science 2007;316:575-9. [DOI:10.1126/science.1139089] [PMID]
33. Mitchelson K, Wen-Yan Qin. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015;6:162-208. [DOI:10.4331/wjbc.v6.i3.162] [PMID] [PMCID]
34. Sheikh Md SA , Xia K, Yang TL, Peng J. Circulating microRNAs: a potential role in diagnosis and prognosis of acute myocardial infarction. Dis Markers 2013;35:561-6. [DOI:10.1155/2013/217948] [PMID] [PMCID]
35. Devaux Y, Vausort M, Goretti E, Nazarov PV, Azuaje F, Gilson G, et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem 2012;58:559-67. [DOI:10.1373/clinchem.2011.173823] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanzadeh H, Ahmadizadeh C, Ghorbani A. The investigation of miR-499 in apoptosis of cardiomyocytes in blood serum of MI patients . MEDICAL SCIENCES. 2019; 29 (2) :155-162
URL: http://tmuj.iautmu.ac.ir/article-1-1582-en.html


Volume 29, Issue 2 (Summer 2019) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.07 seconds with 32 queries by YEKTAWEB 3977