[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 31, Issue 1 (spring 2021) ::
MEDICAL SCIENCES 2021, 31(1): 79-87 Back to browse issues page
Investigation of selective CDK4/6 inhibitor (Abemaciclib) cytotoxicity effects on human anaplastic thyroid cancer
Elaheh Seyed Abutorabi1 , Shiva Irani2 , Marjan Yaghmaie2 , Seyed Hamidollah Ghaffari 3
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran , shghaffari_200@yahoo.com
Abstract:   (2667 Views)
Background: Thyroid cancer is one of the most common endocrine malignancies. Anaplastic thyroid cancer is a rare and dead full cancer among types of the thyroid cancer. Despite the conventional chemotherapy, a considerable number of the patients show developing chemo resistance. Therefore, there is a necessary need to find the novel therapeutic approaches in the anaplastic thyroid cancer patients. The aim of this study was to study anti-tumor effect of Abemaciclib on the anaplastic thyroid carcinoma cell lines.
Materials and methods: The human anaplastic thyroid cancer (SW1736 and C643) were cultured according to ATCC recommendations. The MTT assay was used to assess the chemo sensitivity of the cell lines in exposure to the desire concentration of Abemaciclib. Colony formation assay was used to determine the ability of the cell line colony formation in exposure to the drug. Quantitative real-time PCR was applied to analyze the mRNA expression of the apoptotic and anti-apoptotic genes.
Results: The cell viability and proliferation of the thyroid cancer cell lines were remarkably inhibited in doses of 10 and 20 μM of Abemaciclib (p<0.0001). Also, Abemaciclib reduced the number of the SW1736 and C643 colonies in doses of 1 and 2.5 μM, respectively. Moreover, Abemaciclib significantly reduced anti-apoptotic gene expression levels, including BCL2 and CMYC, and increased pro-apoptotic gene expression levels, including p21 and BAX (p<0.05).
Conclusion: Our study suggests that Abemaciclib could be used as a therapeutic agent in anaplastic thyroid cancer. Further laboratory and animal studies are needed and recommended to evaluate the exact molecular and clinical properties of Abemaciclib.
Keywords: Anaplastic thyroid cancer, Inhibitor, Abemaciclib
Full-Text [PDF 438 kb]   (1336 Downloads)    
Semi-pilot: Experimental | Subject: Oncology
Received: 2019/08/12 | Accepted: 2021/02/9 | Published: 2021/03/24
References
1. Xu X, Qin J, Liu W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene. 2014;546(2):226-32. [DOI:10.1016/j.gene.2014.06.006]
2. Burgess JR. Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982-1997). Thyroid. 2002;12(2):141-9. [DOI:10.1089/105072502753522374]
3. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. Journal of cancer epidemiology. 2013;2013. [DOI:10.1155/2013/965212]
4. Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Molecular and cellular Endocrinology. 2010;321(1):94-102. [DOI:10.1016/j.mce.2009.10.003]
5. O'Neill JP, Shaha AR. Anaplastic thyroid cancer. Oral oncology. 2013;49(7):702-6. [DOI:10.1016/j.oraloncology.2013.03.440]
6. Dumke A-K, Pelz T, Vordermark D. Long-term results of radiotherapy in anaplastic thyroid cancer. Radiation Oncology. 2014;9(1):90. [DOI:10.1186/1748-717X-9-90]
7. Smallridge RC. Approach to the patient with anaplastic thyroid carcinoma. The Journal of Clinical Endocrinology & Metabolism. 2012;97(8):2566-72. [DOI:10.1210/jc.2012-1314]
8. Denaro N, Nigro CL, Russi EG, Merlano MC. The role of chemotherapy and latest emerging target therapies in anaplastic thyroid cancer. OncoTargets and therapy. 2013;6:1231. [DOI:10.2147/OTT.S46545]
9. Ekman E, Lundell G, Tennvall J, Wallin G. Chemotherapy and multimodality treatment in thyroid carcinoma. Otolaryngologic clinics of North America. 1990;23(3):523-7. [DOI:10.1016/S0030-6665(20)31273-1]
10. Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. Lenvatinib for anaplastic thyroid cancer. Frontiers in oncology. 2017;7:25. [DOI:10.3389/fonc.2017.00025]
11. Parenti R, Salvatorelli L, Magro G. Anaplastic thyroid carcinoma: current treatments and potential new therapeutic options with emphasis on TfR1/CD71. International journal of endocrinology. 2014;2014. [DOI:10.1155/2014/685396]
12. Wang H-M, Huang Y-W, Huang J-S, Wang C-H, Kok VC, Hung C-M, et al. Anaplastic carcinoma of the thyroid arising more often from follicular carcinoma than papillary carcinoma. Annals of surgical oncology. 2007;14(10):3011-8. [DOI:10.1245/s10434-007-9503-8]
13. Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2005;103(11):2261-8. [DOI:10.1002/cncr.21073]
14. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. The Journal of Clinical Endocrinology & Metabolism. 2008;93(8):3106-16. [DOI:10.1210/jc.2008-0273]
15. Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Modern Pathology. 2000;13(8):882. [DOI:10.1038/modpathol.3880157]
16. Roskoski Jr R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacological research. 2016;107:249-75. [DOI:10.1016/j.phrs.2016.03.012]
17. Lee HJ, Lee WK, Kang CW, Ku CR, Cho YH, Lee EJ. A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer letters. 2018;417:131-40. [DOI:10.1016/j.canlet.2017.12.037]
18. Lin S-F, Lin J-D, Hsueh C, Chou T-C, Wong RJ. A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PloS one. 2017;12(2):e0172315. [DOI:10.1371/journal.pone.0172315]
19. DAMANTE G, MIO C. Effects of BP-14, a novel cyclin-dependent kinase inhibitor, on anaplastic thyroid cancer cells. 2016.
20. Turner NC, Slamon DJ, Ro J, Bondarenko I, Im S-A, Masuda N, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. New England Journal of Medicine. 2018;379(20):1926-36. [DOI:10.1056/NEJMoa1810527]
21. Iriyama N, Hino H, Moriya S, Hiramoto M, Hatta Y, Takei M, et al. The cyclin-dependent kinase 4/6 inhibitor, abemaciclib, exerts dose-dependent cytostatic and cytocidal effects and induces autophagy in multiple myeloma cells. Leukemia & lymphoma. 2018;59(6):1439-50. [DOI:10.1080/10428194.2017.1376741]
22. Barroso-Sousa R, Shapiro GI, Tolaney SM. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast care. 2016;11(3):167-73. [DOI:10.1159/000447284]
23. Fujiwara Y, Tamura K, Kondo S, Tanabe Y, Iwasa S, Shimomura A, et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer chemotherapy and pharmacology. 2016;78(2):281-8. [DOI:10.1007/s00280-016-3085-8]
24. Baldini E, D'Armiento M, Ulisse S. A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol. 2014;2014:816430. [DOI:10.1155/2014/816430]
25. Lorusso L, Pieruzzi L, Biagini A, Sabini E, Valerio L, Giani C, et al. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer. Onco Targets Ther. 2016;9:6467-77. [DOI:10.2147/OTT.S84625]
26. Suh HJ, Moon HJ, Kwak JY, Choi JS, Kim EK. Anaplastic thyroid cancer: ultrasonographic findings and the role of ultrasonography-guided fine needle aspiration biopsy. Yonsei Med J. 2013;54(6):1400-6. [DOI:10.3349/ymj.2013.54.6.1400]
27. Keutgen XM, Sadowski SM, Kebebew E. Management of anaplastic thyroid cancer. Gland Surg. 2015;4(1):44-51.
28. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011;2011:542358. [DOI:10.1155/2011/542358]
29. Arancio W, Carina V, Pizzolanti G, Tomasello L, Pitrone M, Baiamonte C, et al. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis. Int J Endocrinol. 2014;2015:439370. [DOI:10.1155/2015/439370]
30. Denaro N, Nigro CL, Russi EG, Merlano MC. The role of chemotherapy and latest emerging target therapies in anaplastic thyroid cancer. Onco Targets Ther. 2013;9:1231-41. [DOI:10.2147/OTT.S46545]
31. Lowe NM, Loughran S, Slevin NJ, Yap BK. Anaplastic thyroid cancer: the addition of systemic chemotherapy to radiotherapy led to an observed improvement in survival--a single centre experience and review of the literature. ScientificWorldJournal. 2014;2014:674583. [DOI:10.1155/2014/674583]
32. Seto A, Sugitani I, Toda K, Kawabata K, Takahashi S, Saotome T. Chemotherapy for anaplastic thyroid cancer using docetaxel and cisplatin: report of eight cases. Surg Today. 2015;45(2):221-6. [DOI:10.1007/s00595-013-0751-x]
33. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421-33. [DOI:10.1016/j.chembiol.2010.04.012]
34. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70. [DOI:10.1111/j.2042-7158.2012.01567.x]
35. Florea AM, Busselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011;3(1):1351-71. [DOI:10.3390/cancers3011351]
36. Perri F, Di Lorenzo G, Della Vittoria Scarpati G, Buonerba C. Anaplastic thyroid carcinoma: A comprehensive review of current and future therapeutic options. World J Clin Oncol. 2011. [DOI:10.5306/wjco.v2.i3.150]
37. Cabanillas M, Zafereo M, Williams M, al. e. Recent advances and emerging therapies in anaplastic thyroid carcinoma. F1000Research 2018. [DOI:10.12688/f1000research.13124.1]
38. Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018;17(1):51. [DOI:10.1186/s12943-018-0786-0]
39. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130-46. [DOI:10.1038/nrd4504]
40. Roskoski R, Jr. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res. 2016;107:249-75. [DOI:10.1016/j.phrs.2016.03.012]
41. DiPippo AJ, Patel NK, Barnett CM. Cyclin-Dependent Kinase Inhibitors for the Treatment of Breast Cancer: Past, Present, and Future. Pharmacotherapy. 2016;36(6):652-67. [DOI:10.1002/phar.1756]
42. Torres-Guzman R, Calsina B, Hermoso A, Baquero C, Alvarez B, Amat J, et al. Preclinical characterization of abemaciclib in hormone receptor positive breast cancer. Oncotarget. 2018;8(41):69493-507. [DOI:10.18632/oncotarget.17778]
43. O'Sullivan CC. Overcoming Endocrine Resistance in Hormone-Receptor Positive Advanced Breast Cancer-The Emerging Role of CDK4/6 Inhibitors. Int J Cancer Clin Res. 2015;2(4). [DOI:10.23937/2378-3419/2/4/1029]
44. McCartney A, Moretti E, Sanna G, Pestrin M, Risi E, Malorni L, et al. The role of abemaciclib in treatment of advanced breast cancer. Ther Adv Med Oncol. 2018;10:1758835918776925. [DOI:10.1177/1758835918776925]
45. Kotake T, Toi M. Abemaciclib for the treatment of breast cancer. Expert Opin Pharmacother. 2018;19(5):517-24. [DOI:10.1080/14656566.2018.1448787]
46. Chappell JC, Kellie Turner P, Anne Pak Y, Bacon J, Chiang AY, Royalty J, et al. Abemaciclib inhibits renal tubular secretion without changing glomerular filtration rate. Clin Pharmacol Ther. 2018. [DOI:10.1002/cpt.1296]
47. Fujiwara Y, Tamura K, Kondo S, Tanabe Y, Iwasa S, Shimomura A, et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer Chemother Pharmacol. 2016;78(2):281-8. [DOI:10.1007/s00280-016-3085-8]
48. Sledge GW, Jr., Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol. 2017;35(25):2875-84. [DOI:10.1200/JCO.2017.73.7585]
49. Kempf E, Rousseau B, Besse B, Paz-Ares L. KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur Respir Rev. 2016;25(139):71-6. [DOI:10.1183/16000617.0071-2015]
50. Wu T, Chen Z, To KK, Fang X, Wang F, Cheng B, et al. Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochemical pharmacology. 2017;124:29-42. [DOI:10.1016/j.bcp.2016.10.015]
51. Tate SC, Burke TF, Hartman D, Kulanthaivel P, Beckmann RP, Cronier DM. Optimising the combination dosing strategy of abemaciclib and vemurafenib in BRAF-mutated melanoma xenograft tumours. British journal of cancer. 2016;114(6):669. [DOI:10.1038/bjc.2016.40]
52. Xu X, Qin J, Liu W. Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene 2014;10;546:226-32. [DOI:10.1016/j.gene.2014.06.006]
53. Burgess JR. Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982-1997). Thyroid 2002;12:141-9. [DOI:10.1089/105072502753522374]
54. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013;2013:965212. [DOI:10.1155/2013/965212]
55. Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Mol Cell Endocrinol 2010;28;321:94-102. [DOI:10.1016/j.mce.2009.10.003]
56. O'Neill JP, Shaha AR. Anaplastic thyroid cancer. Oral Oncol 2013; 49:702-6. [DOI:10.1016/j.oraloncology.2013.03.440]
57. Suh HJ, Moon HJ, Kwak JY, Choi JS, Kim EK. Anaplastic thyroid cancer: ultrasonographic findings and the role of ultrasonography-guided fine needle aspiration biopsy. Yonsei Med J 2013;54:1400-6. [DOI:10.3349/ymj.2013.54.6.1400]
58. Denaro N, Nigro CL, Russi EG, Merlano MC. The role of chemotherapy and latest emerging target therapies in anaplastic thyroid cancer. Onco Targets Ther 2013; 16;9:1231-41. [DOI:10.2147/OTT.S46545]
59. Parenti R, Salvatorelli L, Magro G. Anaplastic thyroid carcinoma: current treatments and potential new therapeutic options with emphasis on TfR1/CD71. Int J Endocrinol 2014; 685396. [DOI:10.1155/2014/685396]
60. Allegri L, Baldan F, Mio C, Puppin C, Russo D, Krystof V, et al. Effects of BP-14, a novel cyclin-dependent kinase inhibitor, on anaplastic thyroid cancer cells. Oncol Rep 2016;35:2413-8. [DOI:10.3892/or.2016.4614]
61. Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod Pathol 2000;13: 882-7. [DOI:10.1038/modpathol.3880157]
62. Roskoski Jr R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 2016;107:249-275 [DOI:10.1016/j.phrs.2016.03.012]
63. Lee HJ, Lee WK, Kang CW, Ku CR, Cho YH, Lee EJ. A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer Lett 2018;28:131-140. [DOI:10.1016/j.canlet.2017.12.037]
64. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev 2016;45:129-38. [DOI:10.1016/j.ctrv.2016.03.002]
65. Roskoski R, Jr. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 2016 ;107:249-275. [DOI:10.1016/j.phrs.2016.03.012]
66. Wong K, Di Cristofano F, Ranieri M, Martino D, Di Cristofano A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr Relat Cancer 2019;26:425-36. [DOI:10.1530/ERC-19-0011]
67. Sanchez-Martinez C, Gelbert LM, Lallena MJ, de Dios A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 2015;25:3420-35. [DOI:10.1016/j.bmcl.2015.05.100]
68. Raub TG, LM. Wishart, GN . Sanchez-Martinez, C. Kulanthaivel ,P . Staton BA , et al. Abemaciclib (LY2835219) is an oral inhibitor of the cyclin-dependent kinases 4/6 that crosses the blood-brain barrier and demonstrates In vivo activity against intracranial human brain tumor xenografts. Drug Metab Dispos 2015 ;dmd.114.062745
69. Kim ES. Abemaciclib: first global approval. Drugs 2017; 77:2063-2070. [DOI:10.1007/s40265-017-0840-z]
70. Iriyama N, Hino H, Moriya S, Hiramoto M, Hatta Y, Takei M, et al. The cyclin-dependent kinase 4/6 inhibitor, abemaciclib, exerts dose-dependent cytostatic and cytocidal effects and induces autophagy in multiple myeloma cells. Leuk Lymphoma 2018;59:1439-1450. [DOI:10.1080/10428194.2017.1376741]
71. Barroso-Sousa R, Shapiro GI, Tolaney SM. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care 2016;11:167-173 [DOI:10.1159/000447284]
72. Fujiwara Y, Tamura K, Kondo S, Tanabe Y, Iwasa S, Shimomura A, et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer Chemother Pharmacol 2016;78:281-288. [DOI:10.1007/s00280-016-3085-8]
73. Kim ES, Kelly K, Paz-Ares LG, Garrido P, Jalal S, Mahadevan D, et al. Abemaciclib in Combination with Single-Agent Options in Patients with Stage IV Non-Small Cell Lung Cancer: A Phase Ib Study. Clin Cancer Res. 2018;24:5543-5551. [DOI:10.1158/1078-0432.CCR-18-0651]
74. Palumbo A, Lau G, Saraceni M. Abemaciclib: The Newest CDK4/6 Inhibitor for the Treatment of Breast Cancer. Ann Pharmacother 2018 ;53:178-185. [DOI:10.1177/1060028018795146]
75. Tate SC, Sykes AK, Kulanthaivel P, Chan EM, Turner PK, Cronier DM. A Population Pharmacokinetic and Pharmacodynamic Analysis of Abemaciclib in a Phase I Clinical Trial in Cancer Patients. Clin Pharmacokinet 2018;57:335-344. [DOI:10.1007/s40262-017-0559-8]
76. Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018 ;17:51. [DOI:10.1186/s12943-018-0786-0]
77. Baldini E, D'Armiento M, Ulisse S. A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol 2014;2014:11. [DOI:10.1155/2014/816430]
78. Lorusso L, Pieruzzi L, Biagini A, Sabini E, Valerio L, Giani C, et al. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer. Onco Targets Ther 2016;9: 6467-6477. [DOI:10.2147/OTT.S84625]
79. Keutgen XM, Sadowski SM, Kebebew E. Management of anaplastic thyroid cancer. Gland Surg 2015;4:1
80. Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol 2011;2011:542358. [DOI:10.1155/2011/542358]
81. Arancio W, Carina V, Pizzolanti G, Tomasello L, Pitrone M, Baiamonte C, et al. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis. Int J Endocrinol 2015; 2015: 439370. [DOI:10.1155/2015/439370]
82. Denaro N, Nigro CL, Russi EG, Merlano MC. The role of chemotherapy and latest emerging target therapies in anaplastic thyroid cancer. Onco Targets Ther 2013;6 : 1231-1241. [DOI:10.2147/OTT.S46545]
83. Lowe NM, Loughran S, Slevin NJ, Yap BK. Anaplastic thyroid cancer: the addition of systemic chemotherapy to radiotherapy led to an observed improvement in survival--a single centre experience and review of the literature. ScientificWorldJournal 2014;1-8. [DOI:10.1155/2014/674583]
84. Seto A, Sugitani I, Toda K, Kawabata K, Takahashi S, Saotome T. Chemotherapy for anaplastic thyroid cancer using docetaxel and cisplatin: report of eight cases. Surg Today 2015; 45: 221-226. [DOI:10.1007/s00595-013-0751-x]
85. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421-33. [DOI:10.1016/j.chembiol.2010.04.012]
86. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65:157-70. [DOI:10.1111/j.2042-7158.2012.01567.x]
87. Florea AM, Busselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011;3:1351-71. [DOI:10.3390/cancers3011351]
88. Perri F, Di Lorenzo G, Della Vittoria Scarpati G, Buonerba C. Anaplastic thyroid carcinoma: A comprehensive review of current and future therapeutic options. World J Clin Oncol 2011. 10; 2: 150-157. [DOI:10.5306/wjco.v2.i3.150]
89. Cabanillas M, Zafereo M, Williams M, al. e. Recent advances and emerging therapies in anaplastic thyroid carcinoma. F1000 Faculty Rev 2018;87:1-10 [DOI:10.12688/f1000research.13124.1]
90. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015.;14:130-46. [DOI:10.1038/nrd4504]
91. DiPippo AJ, Patel NK, Barnett CM. Cyclin-Dependent Kinase Inhibitors for the Treatment of Breast Cancer: Past, Present, and Future. Pharmacotherapy 2016 ;36:652-67. [DOI:10.1002/phar.1756]
92. Torres-Guzman R, Calsina B, Hermoso A, Baquero C, Alvarez B, Amat J, et al. Preclinical characterization of abemaciclib in hormone receptor positive breast cancer. Oncotarget 2017.10;8:69493-69507. [DOI:10.18632/oncotarget.17778]
93. Chen SH, Gong X, Zhang Y, Van Horn RD, Yin T, Huber L, et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene 2018;37:821-832. [DOI:10.1038/onc.2017.384]
94. Dickler MN, Tolaney SM, Rugo HS, Cortes J, Dieras V, Patt D, et al. MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR(+)/HER2(-) Metastatic Breast Cancer. Clin Cancer Res 2017;23:5218-5224. [DOI:10.1158/1078-0432.CCR-17-0754]
95. McCartney A, Moretti E, Sanna G, Pestrin M, Risi E, Malorni L, et al. The role of abemaciclib in treatment of advanced breast cancer. Ther Adv Med Oncol 2018;10: 1-14. [DOI:10.1177/1758835918776925]
96. Kotake T, Toi M. Abemaciclib for the treatment of breast cancer. Expert Opin Pharmacother 2018;19:517-524. [DOI:10.1080/14656566.2018.1448787]
97. Chappell JC, Kellie Turner P, Anne Pak Y, Bacon J, Chiang AY, Royalty J, et al. Abemaciclib inhibits renal tubular secretion without changing glomerular filtration rate. Clin Pharmacol Ther 2018;5: 1187-1195 [DOI:10.1002/cpt.1296]
98. Fujiwara Y, Tamura K, Kondo S, Tanabe Y, Iwasa S, Shimomura A, et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer Chemother Pharmacol 2016;78:281-288. [DOI:10.1007/s00280-016-3085-8]
99. Sledge GW, Jr., Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol 2017;35:2875-2884. [DOI:10.1200/JCO.2017.73.7585]
100. Kempf E, Rousseau B, Besse B, Paz-Ares L. KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur Respir Rev 2016;25:71-6. [DOI:10.1183/16000617.0071-2015]
101. Wu T, Chen Z, To KK, Fang X, Wang F, Cheng B, et al. Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochem Pharmacol 2017;124:29-42. [DOI:10.1016/j.bcp.2016.10.015]
102. Tate SC, Burke TF, Hartman D, Kulanthaivel P, Beckmann RP, Cronier DM. Optimising the combination dosing strategy of abemaciclib and vemurafenib in BRAF-mutated melanoma xenograft tumours. Br J Cancer 2016;15;114:669-79. [DOI:10.1038/bjc.2016.40]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyed Abutorabi E, Irani S, Yaghmaie M, Ghaffari S H. Investigation of selective CDK4/6 inhibitor (Abemaciclib) cytotoxicity effects on human anaplastic thyroid cancer. MEDICAL SCIENCES 2021; 31 (1) :79-87
URL: http://tmuj.iautmu.ac.ir/article-1-1671-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 1 (spring 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645