[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 31, Issue 4 (WINTER 2021) ::
MEDICAL SCIENCES 2021, 31(4): 377-387 Back to browse issues page
Optimized preconcentration of Imatinib using dispersive liquid-liquid microextraction coupled with HPLC-UV
Pegah Poormand1 , Mahnaz Qomi 2, Javad Hosseini3
1- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran - Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , mahnaz.qomi@gmail.com
3- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:   (1943 Views)
Background: Imatinib is an antineoplastic agent acting as a tyrosine kinase inhibitor to treat cancer such as lymphoblastic leukemia. The dosage of the anticancer drugs plays a critical role in the survival of the patients. For this reason, the patient's plasma and urine samples should be monitored to obtain the necessary information regarding the toxicity of the drug. In this study, the applicability of preconcentration and dispersive liquid-liquid microextraction for extraction of trace amount of Imatinib in aqueous samples, before a determination by High-Performance Liquid Chromatography (HPLC), was evaluated.
Materials and methods: The targeted drug was extracted from an aqueous sample with pH= 11 (the donor phase) into an extraction solvent (n-octanol) in the dispersive solution (acetone) as an acceptor phase, which has been dispersed in the sample solution. Different variables on extraction efficiency were studied and optimized by chemometrics design and the Taguchi method. The variables were the donor phase's pH, type of extraction solvent, type of dispersive solvent, speed stirring, extraction time, and extraction temperature.
Results: The optimum conditions of the test were as pH of donor phase:11, type of extraction solvent: n-octanol, type of dispersive solvent: acetone, speed stirring: 500rpm , extraction time: 45min,  extraction temperature: 65 centigrade.
Conclusion: The developed method was simple, rapid, sensitive, and suitable for determining trace amounts of Imatinib in aqueous samples.
Keywords: High-performance liquid chromatography, Dispersive liquid-liquid microextraction, Preconcentration, Imatinib.
Full-Text [PDF 651 kb]   (741 Downloads)    
Semi-pilot: Experimental | Subject: Chemistry
Received: 2020/05/9 | Accepted: 2021/08/4 | Published: 2021/12/1
References
1. Ahmadi-Jouibari, T., Fattahi, N., Shamsipur, M.: Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography. J Pharm Biomed Anal 2014; 94 145-151. [DOI:10.1016/j.jpba.2014.01.044]
2. Amiri Pebdani, A., Dadfarnia, S., Haji Shabani, A.M., Khodadoust, S., Talebianpoor, M.S.: Modified dispersive liquid-phase microextraction based on sequential injection solidified floating organic drop combined with HPLC for the determination of phenobarbital and phenytoin. J Sep Sci 2017; 41 (2), 509-517. [DOI:10.1002/jssc.201701111]
3. Amoli-Diva, M., Taherimaslak, Z., Allahyari, M., Pourghazi, K., Manafi, M.H.: Application of dispersive liquid-liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry. Talanta 2015; 134 98-104. [DOI:10.1016/j.talanta.2014.11.007]
4. Asadollahi, B.M., Aghakhani, A.L.I.: application of solid phase microextraction and chemometrics in analysis of volatile components in cinnamon extract 2017.
5. Charmahali, G., Qomi, M., Akhavan, S., Chaharmahali, M., Tafti, F.F.: Determination of Trace Amounts of Risperidone in Human Urine Sample by Hollow Fiber Liquid-Phase Microextraction Combined with High Performance Liquid Chromatography. Biosci Biotechnol Res Asia 2015; 12 (1), 539-548. [DOI:10.13005/bbra/1695]
6. Christoforidis, J.B., DeAngelo, D.J., D'Amico, D.J.: Resolution of leukemic retinopathy following treatment with imatinib mesylate for chronic myelogenous leukemia. Am J Ophthalmol 2003; 135 (3), 398-400. [DOI:10.1016/S0002-9394(02)01964-5]
7. Darvish, M., Qomi, M., Akhgari, M., Raoufi, P.: Determination of Trace Amounts of Methamphetamine in Biological Samples by Hollow Fiber Liquid-phase Microextraction Followed by High Performance Liquid Chromatography. Biosci Biotechnol Res Asia2015; 12 (1), 587-597. [DOI:10.13005/bbra/1701]
8. Ebrahimzadeh, H., Mollazadeh, N., Asgharinezhad, A.A., Shekari, N., Mirbabaei, F.: Multivariate optimization of surfactant-assisted directly suspended droplet microextraction combined with GC for the preconcentration and determination of tramadol in biological samples. J Sep Sci 2013; 36 (23), 3783-3790. [DOI:10.1002/jssc.201300810]
9. Emadzadeh, S., Qomi, M., Saadat, M., Piroozi, F.: Three-phase Hollow fiber Liquid-phase Micro Extraction for Determination and Analysis of Terazosin in Biological Fluids Via High Performance Liquid Chromatography at Trace Levels. Curr Anal Chem 2016; 12 (5), 489-495. [DOI:10.2174/1573411012666151030212948]
10. Faridi, N., Ghasemi, N., Qomi, M., Ramezani, M.: Selective Method for Determination and Microextraction of Imatinib at Trace Levels: A Possible Dose Monitoring Technique in Cancer Patients. Curr Anal Chem 2018; 14 (5), 495-503. [DOI:10.2174/1573411013666170911160215]
11. Ghasemi, E.: Optimization of solvent bar microextraction combined with gas chromatography mass spectrometry for preconcentration and determination of tramadol in biological samples. J Chromatogr A 2012; 1251 48-53 [DOI:10.1016/j.chroma.2012.06.060]
12. Ghorbani, M., Bagherian, A.: optimization of astrazon blue adsorption onto sulfunated styrene-co-divinylbenzene resin by experimental design methodology 2016.
13. Kiszkiel-Taudul, I., Starczewska, B.: Dispersive Liquid-Liquid Microextraction of Famotidine and Nizatidine from Water Samples. J Chromatogr Sci 2018. [DOI:10.1093/chromsci/bmy087]
14. Larson, R.A., Druker, B.J., Guilhot, F., O'Brien, S.G., Riviere, G.J., Krahnke, T., Gathmann, I., Wang, Y.: Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 2018; 111 (8), 4022-4028. [DOI:10.1182/blood-2007-10-116475]
15. Rezaee, M., Khalilian, F.: a novel method for the determination of trace thorium by dispersive liquid-liquid microextraction based on solidification of floating organic drop. Quim. Nova 2016. [DOI:10.5935/0100-4042.20160012]
16. Rezaee, R., Qomi, M., Piroozi, F.: Hollow-fiber micro-extraction combined with HPLC for the determination of sitagliptin in urine samples. J Serbian Chem Soc 2015; 80 (10), 1311-1320. [DOI:10.2298/JSC141227046R]
17. Saber Tehrani, M., Givianrad, M.H., Mahoor, N.: Surfactant-assisted dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of amphetamine and methamphetamine in urine samples. Anal Methods 2012; 4 (5), 1357. [DOI:10.1039/c2ay25125f]
18. Saraji, M., Boroujeni, M.K.: Recent developments in dispersive liquid-liquid microextraction. Anal. Bioanal. Chem 2013; 406 (8), 2027-2066. [DOI:10.1007/s00216-013-7467-z]
19. Suttorp, M., Bornhäuser, M., Metzler, M., Millot, F., Schleyer, E.: Pharmacology and pharmacokinetics of imatinib in pediatric patients. Expert Rev. Clin. Pharmacol 2017: 11 (3), 219-231. [DOI:10.1080/17512433.2018.1398644]
20. Verboom, M.C., Kloth, J.S.L., Swen, J.J., Sleijfer, S., Reyners, A.K.L., Steeghs, N., Mathijssen, R.H.J., Gelderblom, H., Guchelaar, H.-J.: Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors. Pharmacogenomics J 2019. [DOI:10.1038/s41397-019-0079-z]
21. Wang, Q., Wong, C.-H., Chan, H.Y.E., Lee, W.-Y., Zuo, Z.: Statistical Design of Experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int J Pharm 2018; 539 (1-2), 50-57. [DOI:10.1016/j.ijpharm.2018.01.032]
22. Larson RA, Druker B J, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T, et al. Imatinib Pharmacokinetics and Its Correlation with Response and Safety in Chronic-Phase Chronic Myeloid Leukemia: A Subanalysis of the IRIS Study. Blood 2008; 111: 4022-4028. [DOI:10.1182/blood-2007-10-116475]
23. Christoforidis JB, DeAngelo DJ, D'Amico DJ. Resolution of Leukemic Retinopathy Following Treatment with Imatinib Mesylate for Chronic Myelogenous Leukemia. Am J Ophthalmol 2003;135:398-400. [DOI:10.1016/S0002-9394(02)01964-5]
24. Verboom MC, Kloth JSL, Swen JJ, Sleijfer S, Reyners AKL, Steeghs N, et al. Genetic polymorphisms in ABCG2 and CYP1A2 are associated with imatinib dose reduction in patients treated for gastrointestinal stromal tumors. Pharmacogenomics J 2019;19:473-479. [DOI:10.1038/s41397-019-0079-z]
25. Suttorp M, Bornhäuser M, Metzler M, Millot F, Schleyer E. Pharmacology and Pharmacokinetics of Imatinib in Pediatric Patients. Expert Rev Clin Pharmacol 2017; 11 :219-231. [DOI:10.1080/17512433.2018.1398644]
26. Saraji M, Boroujeni MK. Recent Developments in Dispersive Liquid-Liquid Microextraction. Anal Bioanal Chem 2013; 406 :2027-2066. [DOI:10.1007/s00216-013-7467-z]
27. Tehrani MS, Givianrad MH, Mahoor N. Surfactant-Assisted Dispersive Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography for Determination of Amphetamine and Methamphetamine in Urine Samples. Anal Methods 2012;4 :1357. [DOI:10.1039/c2ay25125f]
28. Amoli-Diva M, Taherimaslak Z, Allahyari M, Pourghazi K, Manafi MH. Application of dispersive liquid-liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry. Talanta 2015;134:98-104. [DOI:10.1016/j.talanta.2014.11.007]
29. Ahmadi-Jouibari T, Fattahi N, Shamsipur M. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography. J Pharm Biomed Anal 2014;94:145-51. [DOI:10.1016/j.jpba.2014.01.044]
30. Amiri Pebdani A, Dadfarnia S, Haji Shabani AM, Khodadoust S, Talebianpoor MS. Modified dispersive liquid-phase microextraction based on sequential injection solidified floating organic drop combined with HPLC for the determination of phenobarbital and phenytoin. J Sep Sci 2018;41:509-517. [DOI:10.1002/jssc.201701111]
31. Kiszkiel-Taudul I, Starczewska B. Dispersive Liquid-Liquid Microextraction of Famotidine and Nizatidine from Water Samples. J Chromatogr Sci 2019;57:93-100. [DOI:10.1093/chromsci/bmy087]
32. Rezaee M, Khalilian F. A novel method for the determination of trace thorium by dispersive liquid-liquid microextraction based on solidification of floating organic drop. Quim Nova 2016; 39: 167-171. [DOI:10.5935/0100-4042.20160012]
33. Ebrahimzadeh H, Mollazadeh N, Asgharinezhad AA, Shekari N, Mirbabaei F. Multivariate optimization of surfactant-assisted directly suspended droplet microextraction combined with GC for the preconcentration and determination of tramadol in biological samples. J Sep Sci 2013;36:3783-90. [DOI:10.1002/jssc.201300810]
34. Ghasemi E. Optimization of solvent bar microextraction combined with gas chromatography mass spectrometry for preconcentration and determination of tramadol in biological samples. J Chromatogr A 2012;1251:48-53. [DOI:10.1016/j.chroma.2012.06.060]
35. Wang Q, Wong CH, Chan HYE, Lee WY, Zuo Z. Statistical Design of Experiment (DoE) based development and optimization of DB213 in situ thermosensitive gel for intranasal delivery. Int J Pharm 2018;539:50-57. [DOI:10.1016/j.ijpharm.2018.01.032]
36. Darvish M, Qomi M, Akhgari M, Raoufi P. Determination of Trace Amounts of Methamphetamine in Biological Samples by Hollow Fiber Liquid-Phase Microextraction Followed by High Performance Liquid Chromatography. Biosci Biotechnol Res Asia 2015:12:587-597. [DOI:10.13005/bbra/1701]
37. Emadzadeh S, Qomi M, Saadat M, Piroozi F. Three-Phase Hollow Fiber Liquid-Phase Micro Extraction for Determination and Analysis of Terazosin in Biological Fluids Via High Performance Liquid Chromatography at Trace Levels. Curr Anal Chem 2016;12:489-495. [DOI:10.2174/1573411012666151030212948]
38. Charmahali G, Qomi M, Akhavan S, Chaharmahali M, Tafti F. Determination of Trace Amounts of Risperidone in Human Urine Sample by Hollow Fiber Liquid-Phase Microextraction Combined with High Performance Liquid Chromatography. Biosci Biotechnol Res Asia 2015;12 : 539-548. [DOI:10.13005/bbra/1695]
39. Faridi N, Ghasemi N, Qomi M, Ramezani M. Selective Method for Determination and Microextraction of Imatinib at Trace Levels: A Possible Dose Monitoring Technique in Cancer Patients. Curr Anal Chem 2018;14:495-503. [DOI:10.2174/1573411013666170911160215]
40. Rezaee R, Qomi M, Piroozi F. Hollow-Fiber Micro-Extraction Combined with HPLC for the Determination of Sitagliptin in Urine Samples. J Serbian Chem Soc 2015;80: 1311-1320. [DOI:10.2298/JSC141227046R]
41. Ghorbani M, Bagherian A. Optimization of astrazon blue adsorption onto sulfunated styrene-co-divinylbenzene resin by experimental design methodology. Nashrieh Shimi va Mohandesi Shimi Iran (NSMSI) 2016;35:25-35. [In Persian]
42. Asadollahi BM, Aghakhani AI. Application of solid phase microextraction and chemometrics in analysis of volatile components in cinnamon extract. Nashrieh Shimi va Mohandesi Shimi Iran (NSMSI) 2017;96:105-113. [In Persian]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Poormand P, Qomi M, Hosseini J. Optimized preconcentration of Imatinib using dispersive liquid-liquid microextraction coupled with HPLC-UV. MEDICAL SCIENCES 2021; 31 (4) :377-387
URL: http://tmuj.iautmu.ac.ir/article-1-1706-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 4 (WINTER 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645