:: دوره 32، شماره 3 - ( پائيز 1401 ) ::
جلد 32 شماره 3 صفحات 255-246 برگشت به فهرست نسخه ها
بررسی سمیت و فعالیت زیستی نانو ذرات لیپیدی جامد حاوی اینترفرون آلفا 2 بی (IFNα-2b)
دلارام درود 1، مرجان خاتمی2 ، نسیم رحمانی3 ، مریم شاهعلی4 ، آریانا علوی5 ، محمد حسین هدایتی6
1- دانشیار، دکتری تخصصی فارماسیوتیکس، مجتمع تولیدی تحقیقاتی انستیتو پاستور، تهران، ایران ، d_doroud@yahoo.com
2- کارشناس ارشد بیوشیمی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات
3- دکتری عمومی داروسازی، آزمایشگاه فارماسیوتیکس و سامانه های دارورسان، مجتمع تولیدی تحقیقاتی انستیتو پاستور، تهران، ایران
4- استادیار، دکتری تخصصی ژنتیک مولکولی، مجتمع تولیدی تحقیقاتی انستیتو پاستور، تهران، ایران
5- کارشناس بیوتکنولوژی. آزمایشگاه فارماسیوتیکس و سامانه های دارورسان، مجتمع تولیدی تحقیقاتی انستیتو پاستور، تهران، ایران
6- دکتری تخصصی بیوتکنولوژی پزشکی، مجتمع تولیدی تحقیقاتی انستیتوپاستور، تهران، ایران
چکیده:   (895 مشاهده)
سابقه و هدف: اینترفرون­ها (IFN) گروهی از سایتوکاین­ها با توانایی مداخله در فعالیت ویروسی هستند. مطالعات زیادی در رابطه با سمیت و تعیین فعالیت زیستی آنها انجام گرفته است. در این مطالعه از نانوذرات لیپیدی جامد جهت تولید فرمولاسیون دارویی نوین با هدف کاهش هزینه، افزایش اثربخشی و همچنین کاهش عوارض جانبی مورد استفاده قرار گرفت و اثرات زیستی فرمولاسیون لیپیدی جامد حاوی اینترفرون آلفا-2بی در شرایط برون تن بررسی شد.
روش بررسی: در این مطالعه سمیت و فعالیت زیستی داروی اینترفرون آلفا-2بی کپسوله شده با نانوذرات جامد (SLN) به ترتیب با روش تست MTT و سنجش مهار اثر سایتوپاتیک (CPE) بررسی شد و مقایسه اجمالی با اینترفرون آلفا-2بی و اینترفرون آلفا پگیله شده صورت گرفت. 
یافته­ها: اینترفرون کپسوله شده با نانوذرات لیپیدی جامد (SLN-INF) در برابر اینترفرون و اینترفرون پگیله شده تفاوت معنی­داری از لحاظ سمیت نداشت. همچنین SLN-IFN زیستی بالاتری نسبت به بقیه نمونه های مورد آزمایش نشان داد و فعالیت زیستی آن با گذشت زمان حفظ شد.
نتیجه­گیری: نتایج این مطالعه نشان داد که اینترفرون آلفا-2بی کونژوگه شده با نانو ذرات لیپیدی جامد، فعالیت زیستی اینترفرون آلفا را حفظ می­کند و با توجه به سمیت کم آن می تواند فرمولاسیون مطلوبی جهت انجام مطالعات بیشتر در بالین باشد.
واژه‌های کلیدی: اینترفرون آلفا(2b)، نانوذرات لیپیدی جامد، SLN، فعالیت زیستی
متن کامل [PDF 567 kb]   (533 دریافت)    
نيمه آزمايشي : تجربي | موضوع مقاله: داروسازي
دریافت: 1400/12/9 | پذیرش: 1401/2/19 | انتشار: 1401/6/10
فهرست منابع
1. Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, et al. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 2006;17:618-30. [DOI:10.1021/bc050322y]
2. Bonjardim CA. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses--and viruses counteract IFN action. Microbes Infect 2005;7:569-78. [DOI:10.1016/j.micinf.2005.02.001]
3. Wadler S, Schwartz EL. New Advances in Interferon Therapy of Cancer. Oncologist 1997;2:254-67. [DOI:10.1634/theoncologist.2-4-254]
4. Stanton GJ, Weigent DA, Fleischmann WR Jr, Dianzani F, Baron S. Interferon review. Invest Radiol 1987;22:259-73. [DOI:10.1097/00004424-198703000-00017]
5. Dianzani F. Biological basis for the clinical use of interferon. Gut 1993;34: 74-76. [DOI:10.1136/gut.34.2_Suppl.S74]
6. Goldstein D, Laszlo J. The role of interferon in cancer therapy: a current perspective. CA Cancer J Clin 1988;38:258-77. [DOI:10.3322/canjclin.38.5.258]
7. Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, et al. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 2006;17:618-30. [DOI:10.1021/bc050322y]
8. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010;49:6288-308. [DOI:10.1002/anie.200902672]
9. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60:1638-49. [DOI:10.1016/j.addr.2008.08.002]
10. Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm 2012;424:128-37. [DOI:10.1016/j.ijpharm.2011.12.037]
11. Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Badirzadeh A, Rafati S. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol 2016;38:599-608. [DOI:10.1111/pim.12340]
12. Ramteke KH, Joshi SA, Dhole SN. Solid Lipid Nanoparticle: A Review. IOSR J Pharm 2012; 2:34-44. [DOI:10.9790/3013-26103444]
13. Rassam, H. Allameh A, Eidi A, Alebouyeh M, Doroud D. Novel Formulation for Recombinant Streptokinase by Solid Lipid Nanoparticle: A Light at the End of the Tunnel. Arch Pharma Pract 2020;11:149-55.
14. Pieters R, Huismans DR, Leyva A, Veerman AJ. Comparison of the rapid automated MTT-assay with a dye exclusion assay for chemosensitivity testing in childhood leukaemia. Br J Cancer 1989;59:217-20. [DOI:10.1038/bjc.1989.44]
15. Mehrabi M, Mohammadpour Dounighi N, Rezayat Sorkhabadi SM, Doroud D, Amani A, Khoobi M, et al. Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant. Artif Cells Nanomed Biotechnol 2018;46:230-240. [DOI:10.1080/21691401.2017.1417868]
16. Gilli F, De La Torre AL, Royce DB, Pachner AR. Interaction of PEGylated interferon-beta with antibodies to recombinant interferon-beta. Int Immunopharmacol 2018;62:1-6. [DOI:10.1016/j.intimp.2018.06.030]
17. Grossberg SE, Kawade Y, Kohase M, Klein JP. The neutralization of interferons by antibody. II. Neutralizing antibody unitage and its relationship to bioassay sensitivity: the tenfold reduction unit. J Interferon Cytokine Res 2001;21:743-55. [DOI:10.1089/107999001753124471]
18. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018 ;10:57. [DOI:10.3390/pharmaceutics10020057]
19. Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol Toxicol 2014;54:581-98. [DOI:10.1146/annurev-pharmtox-010611-134615]
20. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007;59:478-90. [DOI:10.1016/j.addr.2007.04.007]
21. Li S, Zhao B, Wang F, Wang M, Xie S, Wang S, et al. Yak interferon-alpha loaded solid lipid nanoparticles for controlled release. Res Vet Sci 2010;88:148-53. [DOI:10.1016/j.rvsc.2009.06.010]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 32، شماره 3 - ( پائيز 1401 ) برگشت به فهرست نسخه ها