[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 32, Issue 1 (Spring 2022) ::
MEDICAL SCIENCES 2022, 32(1): 53-63 Back to browse issues page
Evaluation of different strain mice during in vitro fertilization and embryo development in response to superovulation
Jalleh Shakerzadeh1 , Mansoureh Movahedin 2, Akram Eidi1 , Nasim Hayati Roodbari1 , Kazem Parivar1
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran,
2- Anatomical Sciences Department, Medical Science Faculty, Tarbiat Modares University, Tehran, Iran , movahed.m@modares.ac.ir
Abstract:   (782 Views)
Background: Mice are the most commonly used animal in reproductive research and following the urgent need for these type of studies and also due to the increased interest in the ethical principle of animal rights, four various inbred and outbred strains of the laboratory mouse were evaluated to select the more efficient one for reproductive research.
Materials and methods: 60 female and 16 male of strains (C57, CD1, NMRI, and Balb/c) weighing 25 to 30g and aged 6 to 8 weeks were evaluated under same conditions at different stages of mature oocyte collection, fertilization and in vitro embryo development up to the blastocyst stage. The data were analyzed using a chi-square test, and the selected significance level was p<0.05.
Results: Among the four strains, the highest to lowest fetal survival rates were for the CD1, NMRI, Balb /C and C57 mice, respectively and  their values ​​were 38.9, 14.4, 9.1 and 3.1%, individually.
Conclusion: Considering the results, we conclude that it is not possible to obtain optimal results for some strains due to using same instructions. The results showed that the highest rate of fertilization and embryo development up to the 8-cell stage was observed in the outbred CD1 mice. It seems that this strain is more applicable than others for reproductive research. In addition, we believe that using different medium during fertilization and embryo development as well as laboratory conditions, probably assist in improving the embryo production while minimized the required number of animals and allowed the achievement of the desired result.
Keywords: Invitro fertilization, Superovulation, Inbred mice, Outbred mice, Infertility treatment
Full-Text [PDF 399 kb]   (202 Downloads)    
Semi-pilot: case-control | Subject: Embrylogy
Received: 2021/07/3 | Accepted: 2021/09/28 | Published: 2022/03/21
1. Kupka MS, Ferraretti AP, De Mouzon J, Erb K, D'Hooghe T, Castilla JA, et al. Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE. Hum Reprod 2014;29:2099-113. [DOI:10.1093/humrep/deu175]
2. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod 2003;69:1109-17. [DOI:10.1095/biolreprod.103.018093]
3. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 2016;22:2-22. [DOI:10.1093/humupd/dmv034]
4. Byers SL, Payson SJ, Taft RA. Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 2006;65:1716-26 . [DOI:10.1016/j.theriogenology.2005.09.016]
5. Gates AH, Bozarth JL. Ovulation in the PMSG-treated immature mouse: effect of dose, age, weight, puberty, season and strain (BALB/c, 129 and C129F1 hybrid). Biol Reprod 1978;18:497-505. [DOI:10.1095/biolreprod18.3.497]
6. Nagy A, Gertsenstein M, Vintersten K, Behringer R, Editors. Manipulating the mouse embryo: a laboratory manual. New York: Press Cold Spring Harbor: 2003.
7. Wilson ED, Zarrow M. Comparison of superovulation in the immature mouse and rat. Reproduction 1962;3:148-58. [DOI:10.1530/jrf.0.0030148]
8. Zarrow M, LEE CALDWELL A, Hafez E, Pincus G. Superovulation in the immature rat as a possible assay for LH and HCG. Endocrinology 1958;63:748-58. [DOI:10.1210/endo-63-6-748]
9. Ozgunen K, Erdogan S, Mazmanoglu N, Pamuk I, Logoglu G, Ozgunen T. Effect of gonadotrophin dose on oocyte retrieval in superovulated BALB/c mice. Theriogenology 2001;56:435-45. [DOI:10.1016/S0093-691X(01)00575-1]
10. Spearow JL, Barkley M. Genetic control of hormone-induced ovulation rate in mice. Biol Reprod 1999;61:851-6. [DOI:10.1095/biolreprod61.4.851]
11. Hashlamoun L, Killian G. Effects of timing of ovum recovery, cumulus cells, sperm pre incubation time, and pH on in vitro fertilization in C57BL/6 mice. Arch Androl 1985;15:159-71. [DOI:10.3109/01485018508986906]
12. Martin-Coello J, Gonzalez R, Crespo C, Gomendio M, Roldan E. Superovulation and in vitro oocyte maturation in three species of mice (Mus musculus, Mus spretus and Mus spicilegus). Theriogenology 2008;70:1004-13. [DOI:10.1016/j.theriogenology.2008.06.002]
13. Kameyama Y, Arai K, Ishijima Y. Interval between PMSG priming and hCG injection in superovulation of the mongolian Gerbil. J Mamm Ova Res 2004;21:105-9. [DOI:10.1274/jmor.21.105]
14. Wu H, Chou C, Lin C-S, Huang M. Effects of glucose concentration on in vitro fertilization in BALB/c mice. Reprod Domest Anim 2003;38:470-4. [DOI:10.1046/j.0936-6768.2003.00465.x]
15. Kito S, Ohta Y. In vitro fertilization in inbred BALB/c mice I: isotonic osmolarity and increased calcium-enhanced sperm penetration through the zona pellucida and male pronuclear formation. Zygote 2008;16:249. [DOI:10.1017/S0967199408004607]
16. Uranga J, Arechaga J. Comparative analysis of in vitro development of outbred mouse embryos cultured in Krebs-Ringer or tyrode-derived media. Reprod Nutr Dev 1997;37:41-9. [DOI:10.1051/rnd:19970105]
17. Nakazawa T, Ohashi K, Yamada M, Shinoda S, Saji F, Murata Y, et al. Effect of different concentrations of amino acids in human serum and follicular fluid on the development of one-cell mouse embryos in vitro. J Reprod Fertil 1997;111:327-32. [DOI:10.1530/jrf.0.1110327]
18. Golkar-Narenji A, Gourabi H, Eimani H, Barekati Z, Akhlaghi A. Superovulation, in vitro fertilization (IVF) and in vitro development (IVD) protocols for inbred BALB/cJ mice in comparison with outbred NMRI mice. Reprod Med Biol 2012;11:185-92. [DOI:10.1007/s12522-012-0127-8]
19. Tuttle AH, Philip VM, Chesler EJ, Mogil JS. Comparing phenotypic variation between inbred and outbred mice. Nat Methods 2018;15:994-6. [DOI:10.1038/s41592-018-0224-7]
20. Jensen VS, Porsgaard T, Lykkesfeldt J, Hvid H. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. Am J Transl Res 2016;8:3574.
21. Dekel Y, Glucksam Y, Margalit R. Novel fibrillar insulin formulations for oral administration: Formulation and in vivo studies in diabetic mice. J Control Release 2010;143:128-35. [DOI:10.1016/j.jconrel.2009.12.018]
22. Chia R, Achilli F, Festing MF, Fisher EM. The origins and uses of mouse outbred stocks. Nat genet 2005;37:1181-6. [DOI:10.1038/ng1665]
23. Johnson M. Laboratory mice and rats. Mater Methods 2012;2: 113. [DOI:10.13070/mm.en.2.113]
24. Kabayama H, Takeuchi M, Tokushige N, Muramatsu S-i, Kabayama M, Fukuda M, et al. An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat Commun 2020;11:1-20. [DOI:10.1038/s41467-019-13654-9]
25. Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588:124-9. [DOI:10.1038/s41586-020-2975-4]
26. Luther A, Urfer M, Zahn M, Müller M, Wang S-Y, Mondal M, et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 2019;576:452-8. [DOI:10.1038/s41586-019-1665-6]
27. Labonté B, Abdallah K, Maussion G, Yerko V, Yang J, Bittar T, et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA. Mol Psychiatry 2020:1-14.
28. Patzke C, Brockmann MM, Dai J, Gan KJ, Grauel MK, Fenske P, et al. Neuromodulator signaling bidirectionally controls vesicle numbers in human synapses. Cell 2019;179:498-513. [DOI:10.1016/j.cell.2019.09.011]
29. Kidder BL. In vitro maturation and in vitro fertilization of mouse oocytes and preimplantation embryo culture. Methods Mol Biol 2014;1150:191-9. [DOI:10.1007/978-1-4939-0512-6_12]
30. Kito S, Hayao T, Noguchi-Kawasaki Y, Ohta Y, Hideki U, Tateno S. Improved in vitro fertilization and development by use of modified human tubal fluid and applicability of pronucleate embryos for cryopreservation by rapid freezing in inbred mice. Comp Med 2004;54:564-70.
31. Khalili MA, Anvari M. The effect of in vitro culture on cleavage rates and morphology of the in vivo-developed embryos in mice. IJRM 2007; 5: 17-22.
32. Sapienza C, Peterson AC, Rossant J, Balling R. Degree of methylation of transgenes is dependent on gamete of origin. Nature 1987;328:251-4. [DOI:10.1038/328251a0]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shakerzadeh J, Movahedin M, Eidi A, Hayati Roodbari N, Parivar K. Evaluation of different strain mice during in vitro fertilization and embryo development in response to superovulation. MEDICAL SCIENCES. 2022; 32 (1) :53-63
URL: http://tmuj.iautmu.ac.ir/article-1-1910-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 1 (Spring 2022) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4419