[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 2 (summer 2024) ::
MEDICAL SCIENCES 2024, 34(2): 105-111 Back to browse issues page
The use of artificial intelligence (AI) in pharmacology and the process of drug discovery
Pouyan Pishva1
1- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University (IAUPS), Tehran, Iran
Abstract:   (669 Views)
Background: The invention of artificial intelligence has changed the way of life in general. Currently, artificial intelligence is used throughout the pharmacology research and the field of drug discovery, and this technology has the power to revolutionize the drug discovery process and improve efficiency, accuracy, and time of process.
Materials and methods: In this review article, the results of the published articles were systematically analyzed into the topics of artificial intelligence application in pharmacology, drug industry and drug discovery. The information obtained from the above articles was also classified and reviewed in the same order.
Results: The review of 88 revealed the benefits of using artificial intelligence including the expansion and improvement of structures in the drug design process (such as the drug INS018-055 for the treatment of pulmonary fibrosis), better prediction of the effect of the ligand on the receptor, and better cooperation of the health care providers. Disadvantages were the problems of scientific decision-making with artificial intelligence, ethical concerns in the field of pharmaceuticals and recognition of the limitations of approaches based on artificial intelligence. Strengthening neural networks of databases, integration of artificial intelligence with traditional experimental methods, as well as the use of in silico computer tools facilitate the possibility of solving problems.
Conclusion: The optimal use of artificial intelligence approaches will lead to the acceleration of the drug discovery process, therefore, it is necessary to carry out more studies related to the effect of artificial intelligence in pharmaceutical research.
 
Keywords: Artificial intelligence, Pharmacology, Data analysis, Drug discovery
Full-Text [PDF 316 kb]   (420 Downloads)    
Semi-pilot: Systematic Review | Subject: Pharmacology
Received: 2023/11/19 | Accepted: 2023/12/28 | Published: 2024/06/30
References
1. Chopra H, Baig AA, Gautam RK, Kamal MA. Application of Artificial Intelligence in Drug Discovery. Curr Pharm Des 2022;28:2690-2703 [DOI:10.2174/1381612828666220608141049]
2. Sandeep Ganesh G, Kolusu AS, Prasad K, Samudrala PK, Nemmani KVS. Advancing health care via artificial intelligence: From concept to clinic. Eur J Pharmacol 2022;934:175320. [DOI:10.1016/j.ejphar.2022.175320]
3. Li S, Chen J, Hu Y, Ye M. Editorial: Network pharmacology and AI. J Ethnopharmacol 2023;307:116260. [DOI:10.1016/j.jep.2023.116260]
4. Badillo S, Banfai B, Birzele F, Davydov II, Hutchinson L, Kam-Thong T, et al. An Introduction to Machine Learning. Clin Pharmacol Ther 2020 Apr;107:871-885. [DOI:10.1002/cpt.1796]
5. Smith GF. Artificial Intelligence in Drug Safety and Metabolism. Methods Mol Biol 2022;2390:483-501. [DOI:10.1007/978-1-0716-1787-8_22]
6. Murali K, Kaur S, Prakash A, Medhi B. Artificial intelligence in pharmacovigilance: Practical utility. Indian J Pharmacol 2019;51:373-376. [DOI:10.4103/ijp.IJP_814_19]
7. Johnson M, Patel M, Phipps A, van der Schaar M, Boulton D, Gibbs M. The potential and pitfalls of artificial intelligence in clinical pharmacology. CPT Pharmacometrics Syst Pharmacol 2023;12:279-284. [DOI:10.1002/psp4.12902]
8. Romm EL, Tsigelny IF. Artificial Intelligence in Drug Treatment. Annu Rev Pharmacol Toxicol 2020;60:353-369. [DOI:10.1146/annurev-pharmtox-010919-023746]
9. van der Lee M, Swen JJ. Artificial intelligence in pharmacology research and practice. Clin Transl Sci 2023;16:31-36. [DOI:10.1111/cts.13431]
10. Basile AO, Yahi A, Tatonetti NP. Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol Sci 2019;40:624-635. [DOI:10.1016/j.tips.2019.07.005]
11. Kumar M, Nguyen TPN, Kaur J, Singh TG, Soni D, Singh R, et al. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacol Rep 2023;75:3-18. [DOI:10.1007/s43440-022-00445-1]
12. Lin E, Lin CH, Lane HY. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int J Mol Sci 2020;21:969. [DOI:10.3390/ijms21030969]
13. Cascella M, Schiavo D, Cuomo A, Ottaiano A, Perri F, Patrone R, et al. Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. Pain Res Manag 2023;2023:6018736. [DOI:10.1155/2023/6018736]
14. Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today 2021;26:1040-1052. [DOI:10.1016/j.drudis.2020.11.037]
15. Ballester PJ, Stevens R, Haibe-Kains B, Huang RS, Aittokallio T. Artificial intelligence for drug response prediction in disease models. Brief Bioinform 2022;23:bbab450.
16. Poalelungi DG, Musat CL, Fulga A, Neagu M, Neagu AI, Piraianu AI, et al. Advancing Patient Care: How Artificial Intelligence Is Transforming Healthcare. J Pers Med 2023;13:1214. [DOI:10.3390/jpm13081214]
17. Rashid MBMA, Chow EK. Artificial Intelligence-Driven Designer Drug Combinations: From Drug Development to Personalized Medicine. SLAS Technol 2019;24:124-125. [DOI:10.1177/2472630318800774]
18. Mukherjee K. 40 Years of Trends in Pharmacological Sciences: Blending Man and Machine. Trends Pharmacol Sci 2019;40:541-542. [DOI:10.1016/j.tips.2019.06.006]
19. Wang W, Ye Z, Gao H, Ouyang D. Computational pharmaceutics - A new paradigm of drug delivery. J Control Release 2021;338:119-136. [DOI:10.1016/j.jconrel.2021.08.030]
20. Damiati SA. Digital Pharmaceutical Sciences. AAPS PharmSciTech 2020;21:206. [DOI:10.1208/s12249-020-01747-4]
21. Persidis A, Persidis A. Artificial intelligence for drug design. Nat Biotechnol 1997;15:1035-6. [DOI:10.1038/nbt1097-1035]
22. Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol Sci 2019;40:592-604. [DOI:10.1016/j.tips.2019.06.004]
23. Zhavoronkov A, Vanhaelen Q, Oprea TI. Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology? Clin Pharmacol Ther 2020;107:780-785. [DOI:10.1002/cpt.1795]
24. Asl BA, Mogharizadeh L, Khomjani N, Rasti B, Pishva SP, Akhtari K, et al. Probing the interaction of zero valent iron nanoparticles with blood system by biophysical, docking, cellular, and molecular studies. Int J Biol Macromol 2018 1;109:639-650. [DOI:10.1016/j.ijbiomac.2017.12.085]
25. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev 2019;119:10520-10594. [DOI:10.1021/acs.chemrev.8b00728]
26. Munteanu CR, Dorado J, Pazos A. Artificial intelligence techniques in medicinal chemistry. Curr Top Med Chem 2013;13:525. [DOI:10.2174/1568026611313050001]
27. Duch W, Swaminathan K, Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 2007;13:1497-508. [DOI:10.2174/138161207780765954]
28. Farghali H, Kutinová Canová N, Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiol Res 2021;70:S715-722. [DOI:10.33549/physiolres.934765]
29. Noor F, Asif M, Ashfaq UA, Qasim M, Tahir Ul Qamar M. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform 2023;24:bbad120. [DOI:10.1093/bib/bbad120]
30. Liu Q, Huang R, Hsieh J, Zhu H, Tiwari M, Liu G, et al. Landscape Analysis of the Application of Artificial Intelligence and Machine Learning in Regulatory Submissions for Drug Development From 2016 to 2021. Clin Pharmacol Ther 2023;113:771-774. [DOI:10.1002/cpt.2668]
31. Trajanov D, Trajkovski V, Dimitrieva M, Dobreva J, Jovanovik M, Klemen M, et al. Review of Natural Language Processing in Pharmacology. Pharmacol Rev 2023;75:714-738. [DOI:10.1124/pharmrev.122.000715]
32. Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, et al. QSAR without borders. Chem Soc Rev 2020;49:3525-3564. [DOI:10.1039/D0CS00098A]
33. Iman M, Shafaroodi H, Davood A, Abedini M, Pishva P, Taherkhani M, et al. Design and Synthesis of 2-(Arylmethylideneamino) Isoindolines as New Potential Analgesic and Anti-Inflammatory Agents: A Molecular Hybridization Approach. Curr Pharm Des 2016;22:5760-5766. [DOI:10.2174/1381612822666160701072127]
34. Asl BA, Mogharizadeh L, Khomjani N, Rasti B, Pishva SP, Akhtari K, et al. Probing the interaction of zero valent iron nanoparticles with blood system by biophysical, docking, cellular, and molecular studies. Int J Biol Macromol 2018;109:639-650. [DOI:10.1016/j.ijbiomac.2017.12.085]
35. Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A, Tiewsoh I, et al. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. Int J Mol Sci 2023;24:2026. [DOI:10.3390/ijms24032026]
36. Huang Y, Li C, Shi D, Wang H, Shang X, Wang W, et al. Integrating oculomics with genomics reveals imaging biomarkers for preventive and personalized prediction of arterial aneurysms. EPMA J 2023;14:73-86. [DOI:10.1007/s13167-023-00315-7]
37. Schneider G, Clark DE. Automated De Novo Drug Design: Are We Nearly There Yet? Angew Chem Int Ed Engl 2019;58:10792-10803. [DOI:10.1002/anie.201814681]
38. Zagotto G, Bortoli M. Drug Design: Where We Are and Future Prospects. Molecules 2021;26:7061. [DOI:10.3390/molecules26227061]
39. Rudmann D, Albretsen J, Doolan C, Gregson M, Dray B, Sargeant A, et al. Using Deep Learning Artificial Intelligence Algorithms to Verify N-Nitroso-N-Methylurea and Urethane Positive Control Proliferative Changes in Tg-RasH2 Mouse Carcinogenicity Studies. Toxicol Pathol 2021;49:938-949. [DOI:10.1177/0192623320973986]
40. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, et al. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY) 2016;8:1021-33. [DOI:10.18632/aging.100968]
Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

pishva P. The use of artificial intelligence (AI) in pharmacology and the process of drug discovery. MEDICAL SCIENCES 2024; 34 (2) :105-111
URL: http://tmuj.iautmu.ac.ir/article-1-2172-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 2 (summer 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.06 seconds with 34 queries by YEKTAWEB 4660