Assistant Professor, Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , negar.motakrf@gmail.com
Abstract: (2767 Views)
Background: Metal-organic frameworks have great application potential due to high pore volume, regular pore network, high surface area, simultaneous presence of organic and inorganic groups. Nowadays preparation of metal oxide nanoparticles is developed by thermal degradation of metal-organic frameworks. The aim of this study was to prepare bismuth oxide nanoparticles by thermal degradation method to remove organic section from metal-organic framework based on bismuth metal. Materials and methods: Bismuth oxide nanoparticles were investigated by X-ray diffraction (XRD) for determination of the crystalline structure, Fourier transform infrared spectroscopy (FTIR) for investigation of functional groups, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for study of size and shape, energy dispersive X-ray spectroscopy (EDS) to confirm the chemical composition, and diffuse reflection spectroscopy (DRS) to determine ultraviolet absorption and band gap energy. The antibacterial activity of these nanoparticles was evaluated against Salmonella as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria. Results: Bismuth oxide nanoparticles were prepared in a spherical shape and uniformly with crystal structure by the thermal degradation method of metal-organic framework based on bismuth metal. The potential applications of these nanoparticles can expand the advancement in the field of medical science. Conclusion: The results indicate that bismuth oxide nanoparticles have UV-blocking and antibacterial activity and can have good potential for various applications especially in medical, pharmaceutical, nutritional, and cosmetic fields.
1. Tabrez S, Musarrat J, and Al-khedhairy AA. Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces 2016; 146:70-83. [DOI:10.1016/j.colsurfb.2016.05.046]
2. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspochb D, Ameloot R, Evans JD, and Doonan CJ. Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev 2016; 307:237-254. [DOI:10.1016/j.ccr.2015.08.002]
3. Fan HT, Pan SS, Teng XM, Ye C, Li GH, and Zhang LD. δ-Bi2O3 thin films prepared by reactive sputtering: Fabrication and characterization. Thin Solid Films 2006; 513(1-2):142-147. [DOI:10.1016/j.tsf.2006.01.074]
4. Li R, Chen W, Kobayashi H, and Ma C. Platinum- nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem 2010; 12:212-215. [DOI:10.1039/b917233e]
5. Raza W, Haque MM, Muneer M, Harada T, and Matsumura M. Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. J Alloys Compd 2015; 648:641-650. [DOI:10.1016/j.jallcom.2015.06.245]
6. Gong Y, Ji W, Zhang L, Xie B, and Wang H. Performance of (La,Sr)MnO3 cathode based solid oxide fuel cells: effect of bismuth oxide sintering aid in silver paste cathode current collector. J Power Sources 2011; 196:928-934. [DOI:10.1016/j.jpowsour.2010.08.104]
7. Gou X, Li R, Wang G, Chen Z, and Wexler D. Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology 2009; 20:495-501. [DOI:10.1088/0957-4484/20/49/495501]
8. Malik P, and Chakraborty D. Bi2O3-Catalyzed Oxidation of Aldehydes with t-BuOOH. Tetrahedron Lett 2010; 51:3521-3523. [DOI:10.1016/j.tetlet.2010.04.101]
9. Xia F, Xu X, Li X, Zhang L, Zhang L, Qiu H, Wang W, Liu Y, and Gao J. Preparation of bismuth nanoparticles in aqueous solution andi catalytic performance for the reduction of 4‑nitrophenol. Ind Eng Chem Res 2014; 53:10576−10582. [DOI:10.1021/ie501142a]
10. Schlesinger M, Weber M, Schulze S, Hietschold M, and Mehring M. Metastable β-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. Chemistry 2013; 2:146-155. [DOI:10.1002/open.201300013]
11. Mahmouda WE, and Al-Ghamdia AA. Synthesis and properties of bismuth oxide nanoshell coated polyaniline nanoparticles for promising photovoltaic properties. Polym Adv Technol 2011; 22:877-881. [DOI:10.1002/pat.1591]
12. Oviedo MJ, Contreras OE, Rosenstein Y, Vazquez-Duhalt R, Macedo ZS, Carbajal-Arizaga GG, and Hirata GA. New bismuth germanate oxide nanoparticle material for biolabel applications in medicine. Journal of Nanomaterials 2016; 2016:1-10. [DOI:10.1155/2016/9782625]
13. Abudayyak M, Oztas E, Arici M, and Ozhan G. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere 2017; 169:117-123. [DOI:10.1016/j.chemosphere.2016.11.018]
14. Jassim AMN, Farhan SA, Salman, JAS. Khalaf KJ, Al Marjani MF, and Mohammed MT. Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int j chem biol sci 2015; 1(3):81-84.
15. Mehring M. From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coord Chem Rev 2007; 251:974-1006. [DOI:10.1016/j.ccr.2006.06.005]
16. Perez-Mezcua D, Sirera R, Jimenez R, Bretos I, De Dobbelaere C, Hardy A, Baelc MKV, and Lourdes Calzada M. A UV-absorber bismuth(III)-Nmethyldiethanolamine complex as a lowtemperature precursor for bismuth-based oxide thin films. J Mater Chem C 2014; 2:8750-8760. [DOI:10.1039/C4TC00960F]
17. Hou J, Yang C, Wang Z, Zhou W, Jiao S, and Zhu H. In situ synthesis of α-β-phase heterojunction on Bi2O3 nanowireswith exceptional visible-light photocatalytic performance. Appl Catal B 2013; 142-143:504-511. [DOI:10.1016/j.apcatb.2013.05.050]
18. Solanki PR, Singh J, Rupavali B, Tiwari S, and Malhotr BD. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater Sci Eng C 2017; 70:564-571. [DOI:10.1016/j.msec.2016.09.027]
19. Xia F, Xu X, Li X, Zhang L, Zhang L, Qiu H, Wang W, Liu Y, and Gao J. Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-Nitrophenol. Ind Eng Chem Res 2014 53(26):10576-10582. [DOI:10.1021/ie501142a]
20. La J, Huang Y, Luo G, Lai J, Liu C, and Chu G. Synthesis of bismuth oxide nanoparticles by solution combustion method. PARTICUL SCI TECHNOL 2012; 31(3):287-290. [DOI:10.1080/02726351.2012.727525]
21. Wu J, Qin F, Lu Z, Yang HJ, and Chen R. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Nanoscale Res Lett 2011; 6(1):66-74. [DOI:10.1186/1556-276X-6-66]
22. Zulkifli ZA, Razak KA, Rahman WNWA, and Abidin SZ. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. J Phys Conf Ser 2018; 1082:012103. [DOI:10.1088/1742-6596/1082/1/012103]
23. Torrisi L, Silipigni L, Restuccia N, Cuzzocrea S, Cutroneo M, Barreca F, Fazio B, Di Marco G, and Guglielmino S. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J Phys Chem Solids 2018; 119:62-70. [DOI:10.1016/j.jpcs.2018.03.034]
24. Anandan S, and Wu JJ. Microwave Assisted Rapid Synthesis of Bi2O3 Short Nanorods. Mater Lett 2009; 63:2387-2389. [DOI:10.1016/j.matlet.2009.08.022]
25. Mallahi M, Shokuhfar A, Vaezi MR, Esmaeilirad A, and Mazinani V. Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. AJER. (2014) 3(4): 162-165. [DOI:10.17950/ijer/v3s4/420]
26. Mädler L, and Pratsinis SE. Bismuth oxide nanoparticles by flame spray pyrolysis. J Am Ceram Soc 2004; 85(7):1713-1718. [DOI:10.1111/j.1151-2916.2002.tb00340.x]
27. Carotenuto G, Hison CL, Capezzuto F, and Palomba M. Synthesis and thermoelectric characterisation of bismuth nanoparticles. J Nanoparticle Res 2009; 11(7):1729-1738. [DOI:10.1007/s11051-008-9541-6]
28. Schulz S, Heimann S, Wölper C, and Assenmacher W. Synthesis of bismuth pseudocubes by thermal decomposition of Bi2Et4. Chem Mater 2012; 24(11):2032-2039. [DOI:10.1021/cm2038377]
29. Huang YJ, Zheng YQ, Zhu HL, and Wang JJ. Hydrothermal synthesis of bismuth(III) coordination polymer and its transformation to nano α-Bi2O3 for photocatalytic degradation. J Solid State Chem 2016; 239:274-281. [DOI:10.1016/j.jssc.2016.05.006]
30. Gujar TP, Shinde VR, Lokhande CD, Mane RS, and Han SH. Formation of highly textured (111) Bi2O3 films by anodization of electrodeposited bismuth films. Appl Surf Sci 2006; 252:2747-2751. [DOI:10.1016/j.apsusc.2005.04.034]
31. Gujar TP, Shinde VR, and Lokhande CD. The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films. Appl Surf Sci 2008; 254:4186- 4190. [DOI:10.1016/j.apsusc.2008.01.040]
32. Kim H, Jin C, Park S, Lee WI, Chin IJ, and Lee C. Structure and optical properties of Bi2S3 and Bi2O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chem Eng J 2013; 215:151-156. [DOI:10.1016/j.cej.2012.10.102]
33. Nazari P, Faramarzi MA, Sepehrizadeh Z, Mofid MA, Bazaz RD, Shahverdi AR. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterization. IET Nanobiotechnol 2012; 6(2):58-62. [DOI:10.1049/iet-nbt.2010.0043]
34. Hajiashrafi, S., Motakef-Kazemi, N., Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon 2019; 5:e02152. [DOI:10.1016/j.heliyon.2019.e02152]
35. Chen, L., Shen, Y., Bai, J., Wang, C. Novel symmetrical coralloid Cu 3D superstructures: Solid-state synthesis from a Cu-carboxylate MOF and their in-situ thermal conversion. J Solid State Chem 2009; 182:2298-2306. [DOI:10.1016/j.jssc.2009.06.007]
36. Zhang, L., Hu, Y.H. A Systematic Investigation of Decomposition of Nano Zn4O(C8H4O4)3 Metal−Organic Framework. J Phys Chem C 2010; 114:2566-2572. [DOI:10.1021/jp911043r]
37. Shahangi Shirazi, F., Akhbari, K. Preparation of zinc oxide nanoparticles from nanoporous metal-organic framework with one-dimensional channels occupied with guest water molecules. Inorganica Chimica Acta 2015; 436:1-6. [DOI:10.1016/j.ica.2015.07.025]
38. Bagchi, V., Bandyopadhyay, D. In situ generation of palladium oxide nano-crystals. J Organomet Chem 694, 2009, 1259-1262. [DOI:10.1016/j.jorganchem.2009.01.037]
39. Mehmandoust, MR., Motakef-Kazemi, N., Ashouri, F. Nitrate Adsorption from Aqueous Solution by Metal-Organic Framework MOF-5. IRAN J SCI TECHNOL A. 2019; 43:443-449. [DOI:10.1007/s40995-017-0423-6]
40. Motakef-Kazemi, N., Shojaosadati, SA., Morsali, A. Evaluation of the effect of nanoporous nanorods Zn2(bdc)2(dabco) dimension on ibuprofen loading and release. J IRAN CHEM SOC 2016; 13(7):1205-1212. [DOI:10.1007/s13738-016-0835-9]
41. Motakef-Kazemi, N., Shojaosadati, SA., Morsali, A. In situ synthesis of a drug-loaded MOF at room temperature. MICROPOR MESOPOR MAT 2014; 186:73-79. [DOI:10.1016/j.micromeso.2013.11.036]
42. Cheng, JY., Dong, YB., Huang, RQ., Smith, MD. Synthesis and characterization of new coordination polymers generated from oxadiazole-containing ligands and IIB metal ions. Inorg chim acta 2005; 358:891-902. [DOI:10.1016/j.ica.2004.10.034]
43. Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal chem soc dalton trans 2000; 21:3885-3896. [DOI:10.1039/b003010o]
44. Khlobystov, AN., Blake, AJ., Champness, NR., Lemenovskii, DA., Majouga, AG., Zyk, NV., Schroder, M. Supramolecular design of one dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen donor ligands. Coord chem rev 2001; 222:155-192. [DOI:10.1016/S0010-8545(01)00370-8]
45. Du, M., Zhao, XJ. [Cu(bipy)2.5(H2O)](ClO4)2(H2O)(CH3OH)1.5}n (bipy = 4,4′-bipyridine): organic template effect in formation of a novel bilayer coordination polymer with large chiral channels. Inorg chem commun 2004; 7:1056-1060. [DOI:10.1016/j.inoche.2004.07.020]
46. Hoskins, BF., Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod like segments. Journal am chem soc 1989; 111:5962-5964. [DOI:10.1021/ja00197a079]
47. Thirumurugan, A., Cheetham, AK., Anionic metal-organic frameworks of bismuth benzenedicarboxylates: synthesis, structure and ligand-sensitized photoluminescence. Eur J Inorg Chem 2010; 24:3823-3828. [DOI:10.1002/ejic.201000535]
48. Gotić, M., Popović, S., Musić, S. Influence of synthesis procedure on the morphology of bismuth oxide particles. Mater Lett 2007; 61:709-714. [DOI:10.1016/j.matlet.2006.05.048]
49. Sood, S., Umar, A., Mehta, SK., Kansal, SK., α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceram Int 2015; 41(3):3355-3364. [DOI:10.1016/j.ceramint.2014.10.038]
50. Leontiea, L., Caraman, M., Alexe, M., Harnagea, C. Structural and optical characteristics of bismuth oxidethin films. Surface Science 2002; 507-510:480-485. [DOI:10.1016/S0039-6028(02)01289-X]
51. Tabrez S, Musarrat J, Al-khedhairy AA. Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B 2016; 146:70-83. [DOI:10.1016/j.colsurfb.2016.05.046]
52. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspochb D, et al. Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev. 2016; 307:237-254. [DOI:10.1016/j.ccr.2015.08.002]
53. Raza W, Haque MM, Muneer M, Harada T, Matsumura M. Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. J Alloys Compd 2015; 648:641-650. [DOI:10.1016/j.jallcom.2015.06.245]
54. Gong Y, Ji W, Zhang L, Xie B, Wang H. Performance of (La,Sr)MnO3 cathode based solid oxide fuel cells: effect of bismuth oxide sintering aid in silver paste cathode current collector. J Power Sources 2011; 196:928-934. [DOI:10.1016/j.jpowsour.2010.08.104]
55. Gou X, Li R, Wang G, Chen Z, and Wexler D. Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology 2009; 20:495-501. [DOI:10.1088/0957-4484/20/49/495501]
56. Oviedo MJ, Contreras OE, Rosenstein Y, Vazquez-Duhalt R, Macedo ZS, Carbajal-Arizaga GG, et al. New bismuth germanate oxide nanoparticle material for biolabel applications in medicine. J Nanomater 2016; 2016:1-10. [DOI:10.1155/2016/9782625]
57. Abudayyak M, Oztas E, Arici M, and Ozhan G. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere 2017; 169:117-123. [DOI:10.1016/j.chemosphere.2016.11.018]
58. Jassim AMN, Farhan SA, Salman, JAS. Khalaf KJ, Al Marjani MF, Mohammed MT. Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int J Chem Biol Sci 2015; 1:81-84.
59. Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, et al. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica 2016; 32: 1444-1452. [DOI:10.1016/j.ejmp.2016.10.015]
60. Du F, Lou J, Jiang R, Fang Z, Zhao X, Niu Y, et al. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int J Nanomedicine 2017; 12: 5973-5992. [DOI:10.2147/IJN.S130455]
61. Wei B, Zhang X, Zhang C, Jiang Y, Fu YY, Yu C, et al. Facile synthesis of uniform-sized bismuth nanoparticles for CT visualization of gastrointestinal tract in vivo. ACS Appl Mater Interfaces 2016; 8: 12720-12726. [DOI:10.1021/acsami.6b03640]
62. Torrisi L, Silipigni L, Restuccia N, Cuzzocrea S, Cutroneo M, Barreca F, Fazio B, Di Marco G, and Guglielmino S. Laser-generated bismuth nanoparticles for applications in imaging and radiotherapy. J Phys Chem Solids 2018; 119:62-70. [DOI:10.1016/j.jpcs.2018.03.034]
63. Mehring M. From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coord Chem Rev 2007; 251:974-1006. [DOI:10.1016/j.ccr.2006.06.005]
64. Perez-Mezcua D, Sirera R, Jimenez R, Bretos I, De Dobbelaere C, Hardy A, Baelc MKV, and Lourdes Calzada M. A UV-absorber bismuth(III)-Nmethyldiethanolamine complex as a lowtemperature precursor for bismuth-based oxide thin films. J Mater Chem C 2014; 2:8750-8760. [DOI:10.1039/C4TC00960F]
65. Xia F, Xu X, Li X, Zhang L, Zhang L, Qiu H, et al. Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-Nitrophenol. Ind Eng Chem Res 2014;53:10576-10582. [DOI:10.1021/ie501142a]
66. La J, Huang Y, Luo G, Lai J, Liu C, and Chu G. Synthesis of bismuth oxide nanoparticles by solution combustion method. Particul Sci Technol 2012; 31:287-290. [DOI:10.1080/02726351.2012.727525]
67. Wu J, Qin F, Lu Z, Yang HJ, Chen R. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Nanoscale Res Lett 2011; 6:66-74. [DOI:10.1186/1556-276X-6-66]
68. Zulkifli ZA, Razak KA, Rahman WNWA, Abidin SZ. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. J Phys Conf Ser 2018; 1082:012103. [DOI:10.1088/1742-6596/1082/1/012103]
69. Anandan S, and Wu JJ. Microwave Assisted Rapid Synthesis of Bi2O3 Short Nanorods. Mater Lett 2009; 63:2387-2389. [DOI:10.1016/j.matlet.2009.08.022]
70. Mallahi M, Shokuhfar A, Vaezi MR, Esmaeilirad A, and Mazinani V. Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. AJER 2014; 3:162-165. [DOI:10.17950/ijer/v3s4/420]
71. Mädler L, Pratsinis SE. Bismuth oxide nanoparticles by flame spray pyrolysis. J Am Ceram Soc 2004; 85:1713-1718. [DOI:10.1111/j.1151-2916.2002.tb00340.x]
72. Schulz S, Heimann S, Wölper C, Assenmacher W. Synthesis of bismuth pseudocubes by thermal decomposition of Bi2Et4. Chem Mater 2012; 24:2032-2039. [DOI:10.1021/cm2038377]
73. Hajiashrafi S, Motakef-Kazemi N. Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon 2019; 5: e02152. [DOI:10.1016/j.heliyon.2019.e02152]
74. Motakaf Kazemi N. Preparation and evaluation of zinc oxide nanoparticles by thermal degradation method of metal-organic framework [Zn2(BDC)2(DABCO)] n. Nanomaterials 2019; 37:25-32. [In Persian]
75. Mehmandoust MR, Motakef-Kazemi N, Ashouri F. Nitrate Adsorption from Aqueous Solution by Metal-Organic Framework MOF-5. Iran J Sci Technol A 2019; 43:443-449. [DOI:10.1007/s40995-017-0423-6]
76. Motakef-Kazemi N, Shojaosadati SA, Morsali A. Evaluation of the effect of nanoporous nanorods Zn2(bdc)2(dabco) dimension on ibuprofen loading and release. J Iran Chem Soc 2016; 13:1205-1212. [DOI:10.1007/s13738-016-0835-9]
77. Motakef-Kazemi N, Shojaosadati SA, and Morsali A. In situ synthesis of a drug-loaded MOF at room temperature. Micropor Mesopor Mat 2014; 186:73-79. [DOI:10.1016/j.micromeso.2013.11.036]
78. Janiak, C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans 2000; 21:3885-3896. [DOI:10.1039/b003010o]
79. Thirumurugan A, Cheetham AK. Anionic metal-organic frameworks of bismuth benzenedicarboxylates: synthesis, structure and ligand-sensitized photoluminescence. Eur J Inorg Chem 2010; 24:3823-3828. [DOI:10.1002/ejic.201000535]
80. Gotić M, Popović S, and Musić S. Influence of synthesis procedure on the morphology of bismuth oxide particles. Mater Lett 2007; 61:709-714. [DOI:10.1016/j.matlet.2006.05.048]
81. Sood S, Umar A, Mehta SK, and Kansal SK. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceram Int 2015; 41:3355-3364. [DOI:10.1016/j.ceramint.2014.10.038]
82. Leontiea L, Caraman M, Alexe M, and Harnagea C. Structural and optical characteristics of bismuth oxidethin films. Surf Sci 2002; 507-510:480-485. [DOI:10.1016/S0039-6028(02)01289-X]
83. Motakef-Kazemi N, Yaqoubi M. Green Synthesis and Characterization of Bismuth Oxide Nanoparticle Using Mentha Pulegium Extract. Iran J Pharm Res 2020;19:70-79.
Motakef Kazemi N. Preparation and evaluation of bismuth oxide nanoparticles by thermal degradation of metal organic framework. MEDICAL SCIENCES 2021; 31 (3) :259-265 URL: http://tmuj.iautmu.ac.ir/article-1-1668-en.html