:: Volume 31, Issue 3 (Fall 2021) ::
MEDICAL SCIENCES 2021, 31(3): 276-283 Back to browse issues page
Antibacterial effects study of nanofluid containing carbon nanotubes and evaluation of its efficacy on reducing antibiotic resistance of Pseudomonas aeruginosa
Vahid Amiri1 , Mojgan Sheikhpour 2, Fahimeh Shooraj1 , Masoume Parzadeh3 , Morteza Masoumi1
1- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
2- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran . , m_sheikhpour@pasteur.ac.ir
3- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (983 Views)
Background: Pseudomonas aeruginosa is an opportunistic gram-negative bacterium that causes infections of the urinary tract, respiratory tract, skin inflammation, soft tissue infections, and a variety of systemic infections. Increased antibiotic resistance in Pseudomonas aeruginosa has led to its introduction as one of the most important nosocomial infections. Recently, carbon nanotubes are important and effective antibacterial agents.  
Materials and methods: Carbon nanotubes were prepared as carboxyl-functionalized nanofluids and then were evaluated on Pseudomonas aeruginosa to reduce antibiotic resistance.
Results: It was observed that multi-walled carbon nanotubes had antimicrobial effects on Pseudomonas aeruginosa. Bacterial resistance to the antibiotic meropenem was also significantly reduced in the presence of nanofluids containing functionalized carbon nanotubes. Thus, by co-administration of functionalized carbon nanotubes and meropenem, in the nanofluid condition, a significant reduction in growth was observed.
Conclusion: In the present study, using nanofluids containing functionalized carbon nanotubes and also increasing its stability, the antibiotic resistance of Pseudomonas aeruginosa was significantly reduced in lower dilutions than antibiotics alone. However, more specialized cellular and molecular research are needed to obtain more accurate results.
Keywords: Pseudomonas aeruginosa, Multi-walled carbon nanotubes, Nanofluid, antibiotic resistance.
Full-Text [PDF 444 kb]   (412 Downloads)    
Semi-pilot: Experimental | Subject: Infectious Diseases
Received: 2020/12/27 | Accepted: 2021/04/20 | Published: 2021/09/1
References
1. Trostrup H, Lerche CJ, Christophersen LJ, Thomsen K, Jensen PO, Hougen HP, et al. Pseudomonas aeruginosa biofilm hampers murine central wound healing by suppression of vascular epithelial growth factor. Int Wound J 2018;15:123-32. [DOI:10.1111/iwj.12846]
2. Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am J Respir Cell Mol Biol 2018;58:428-439. [DOI:10.1165/rcmb.2017-0321TR]
3. Imani Fooladi A, Sattari M, Pourbabaei AA, Gholami M. Relation between quinolones and beta-lactams resistance with feature of producing capsules in Pseudomonas aeruginosa isolated from urine. J Med Sci 2009;19:97-103.
4. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019. 28;32:e00031-19. [DOI:10.1128/CMR.00031-19]
5. Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis 2020;20: 92. [DOI:10.1186/s12879-020-4811-8]
6. Pachori P, Gothalwal R, Gandhi PJG, Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. diseases2019;6:109-19. [DOI:10.1016/j.gendis.2019.04.001]
7. Tartof SY, Kuntz JL, Chen LH, Wei R, Puzniak L, Tian Y, et al. Development and Assessment of Risk Scores for Carbapenem and Extensive β-Lactam Resistance Among Adult Hospitalized Patients with Pseudomonas aeruginosa Infection. JAMA Netw Open 2018 5;1:e183927. [DOI:10.1001/jamanetworkopen.2018.3927]
8. Orgensen SCJ, Rybak MJ. Meropenem and Vaborbactam: Stepping up the Battle against Carbapenem-resistant Enterobacteriaceae. Pharmacotherapy 2018;38:444-461. [DOI:10.1002/phar.2092]
9. Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M, et al. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 25;63:e00779-19. [DOI:10.1128/AAC.00779-19]
10. Dugal S, Fernandes A. Carbapenem Hydrolysing Metallo-β-Lactamases. International Journal of Current Pharmaceutical Research 2011;3:9-16.
11. Ebrahimzadeh Shiraz T, Rezaei Yazdi H, Alijanianzadeh M. Evaluation of Carbapenemase resistance in Pseudomonas aeruginosa and Enterobacteriaceae family isolated from clinical specimens by using phenotypic methods in 2014-2015. Pars of Jahrom Uni Med Sci 2016;14:8-15. [In Persian] [DOI:10.29252/jmj.14.4.8]
12. Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine 2019; 25;14:1469-1487. [DOI:10.2147/IJN.S191340]
13. Eleraky NE, Allam A, Hassan SB, Omar MMJP. Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020;12:142. [DOI:10.3390/pharmaceutics12020142]
14. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy CJBri. Carbon nanotubes: applications in pharmacy and medicine. Biomed Research J 2013;2013. [DOI:10.1155/2013/578290]
15. Bains D, Singh G, Bhinder J, Agnihotri PK, Singh N. Ionic Liquid-Functionalized Multiwalled Carbon Nanotube-Based Hydrophobic Coatings for Robust Antibacterial Applications. ACS Appl Bio Mater 2020;3:2092-103. [DOI:10.1021/acsabm.9b01217]
16. Liu D, Luo J, Wang H, Ding L, Zeng XA. Synthesis of Dihydromyricetin Coated Multi-Walled Carbon Nanotubes (MWCNTs) and Antibacterial Activities. J Nanosci Nanotechnol 2020;1;20:6148-6154. [DOI:10.1166/jnn.2020.18002]
17. Silva MA, Felgueiras HP, de Amorim MTP. Carbon Based Membranes with Modified Properties: Thermal, Morphological, Mechanical and Antimicrobial. Cellulose 2020 ;27:1497-1516. [DOI:10.1007/s10570-019-02861-8]
18. Zomorodbakhsh S, Abbasian Y, Naghinejad M, Sheikhpour M. The Effects Study of Isoniazid Conjugated Multi-Wall Carbon Nanotubes Nanofluid on Mycobacterium tuberculosis. Int J Nanomedicine 2020;15:5901-9. [DOI:10.2147/IJN.S251524]
19. Cusack T, Ashley E, Ling C, Rattanavong S, Roberts T, Turner P, et al. Impact of CLSI and EUCAST breakpoint discrepancies on reporting of antimicrobial susceptibility and AMR surveillance. Clin Microbiol Infect 2019;25:910-911. [DOI:10.1016/j.cmi.2019.03.007]
20. Chen S, Li R, Cheng C, Xu JY, Jin C, Gao F, et al. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice. Cell Biol Int 2018;42:877-889. [DOI:10.1002/cbin.10955]
21. Krishnan N, Velramar B, Ramatchandirin B, Abraham GC, Duraisamy N, Pandiyan R, et al. Effect of biogenic silver nanocubes on matrix metalloproteinases 2 and 9 expressions in hyperglycemic skin injury and its impact in early wound healing in streptozotocin-induced diabetic mice. Mater Sci Eng C Mater Biol Appl 2018;91:146-152. [DOI:10.1016/j.msec.2018.05.020]
22. Ahmed R, Tariq M, Ali I, Asghar R, Noorunnisa Khanam P, Augustine R, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 2018;120:385-393. [DOI:10.1016/j.ijbiomac.2018.08.057]
23. Yuan YG, Peng QL, Gurunathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int J Mol Sci 2017;6;18:569. [DOI:10.3390/ijms18030569]
24. Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir 2008;24:6409-13. [DOI:10.1021/la800951v]
25. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B Biointerfaces 2012;92:196-202. [DOI:10.1016/j.colsurfb.2011.11.045]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 3 (Fall 2021) Back to browse issues page