:: Volume 31, Issue 4 (WINTER 2021) ::
MEDICAL SCIENCES 2021, 31(4): 413-424 Back to browse issues page
The effect of leisure time regular exercise on neutrophil function, myeloperoxidase levels, and antioxidant capacity in middle-aged men
Seyed Reza Rahimi Moghaddam1 , Alireza Elmieh 2, Mohammad Reza Fadaei Chafy3
1- PhD Student in Sports Physiology, Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran
2- Associate Professor, Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran , elmieh@iaurasht.acir
3- Assistant Professor, Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran
Abstract:   (1845 Views)
Background: Exercise can cause inflammation and neutrophil activity. Neutrophils contain the enzyme myeloperoxidase that its main function is to produce reactive oxygen species. On the other hand, physical activity can improve immune function and antioxidant activity. Therefore, the aim of the present study was to evaluate neutrophil activity, changes in myeloperoxidase levels and total antioxidant capacity of healthy middle-aged men participating in regular leisure time exercises and untrained subjects.
Materials and methods: Twenty trained (age 53.58± 2.94 years, BMI 25.47±1.6) and 17 untrained (age 54.17±2.83 years, BMI 27.83±1.12) subjects participated in this study. Subjects performed modified Bruce treadmill test as a model of progressive exercise training. Blood samples were taken before, immediately after and one hour after the end of the test.
Results: There was a significant difference in the neutrophil counts of the trained group and also between both groups. Furthermore, the results showed significant difference in myeloperoxidase levels in trained compared to untrained group. Significant changes in total antioxidant capacity were observed in both groups and the trained group demonstrated higher levels of total antioxidant capacity.
Conclusion: Participation in regular leisure time exercises can improve neutrophil function, reduce myeloperoxidase levels and increase the total antioxidant capacity of healthy middle-aged men and may potentially slowdown the immunosenescence process.
Keywords: Leisure time activity, Neutrophil, Myeloperoxidase, Total antioxidant capacity.
Full-Text [PDF 406 kb]   (809 Downloads)    
Semi-pilot: Controlled/Randomized clinical trial | Subject: Physiology
Received: 2021/02/16 | Accepted: 2021/05/9
References
1. References
2. Silveira LS, Antunes Bde M, Minari AL, Dos Santos RV, Neto JC, Lira FS. Macrophage Polarization: Implications on Metabolic Diseases and the Role of Exercise. Crit Rev Eukaryot Gene Expr. 2016;26(2):115-32. [DOI:10.1615/CritRevEukaryotGeneExpr.2016015920]
3. Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer's Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front Immunol. 2018;8:1974. [DOI:10.3389/fimmu.2017.01974]
4. Vida C, de Toda IM, Cruces J, Garrido A, Gonzalez-Sanchez M, De la Fuente M. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol. 2017;12:423-437. [DOI:10.1016/j.redox.2017.03.005]
5. Terra R, da Silva SAG, Pinto VS, Dutra PML. Effect of exercise on the immune system: cell response, adaptation and signaling. Rev Bras Med Esport. 2012;18(3):208-2014. [DOI:10.1590/S1517-86922012000300015]
6. Xie K, Varatnitskaya M, Maghnouj A, Bader V, Winklhofer KF, Hahn S, Leichert LI. Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells. Redox Biol. 2020;28:101344. [DOI:10.1016/j.redox.2019.101344]
7. Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules. 2018;23:2561. [DOI:10.3390/molecules23102561]
8. Vlasova II, Sokolov AV, Kostevich VA, Mikhalchik EV, Vasilyev VB. Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines. Biochemistry (Mosc). 2019;84(6):652-662. [DOI:10.1134/S0006297919060087]
9. Ren M , Zhou K , He L , Lin W . Mitochondria and lysosome-targetable fluorescent probes for HOCl: recent advances and perspectives. J Mater Chem B. 2018 Mar 28;6(12):1716-1733. [DOI:10.1039/C7TB03337K]
10. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med Sci (Basel). 2018 Apr 18;6(2):33. [DOI:10.3390/medsci6020033]
11. Groussard C, Maillard F, Vazeille E, Barnich N, Sirvent P, Otero YF, et al. Tissue-Specific Oxidative Stress Modulation by Exercise: A Comparison between MICT and HIIT in an Obese Rat Model. Oxid Med Cell Longev. 2019;Article ID 1965364:11 pages. [DOI:10.1155/2019/1965364]
12. Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer's Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front Immunol. 2018;8:1974. [DOI:10.3389/fimmu.2017.01974]
13. Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev. 2011;7(2):106-25. [DOI:10.2174/157339911794940729]
14. Sies H. On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology. 2018;7:122-126. [DOI:10.1016/j.cotox.2018.01.002]
15. Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta. 2019;491:85-90. [DOI:10.1016/j.cca.2019.01.021]
16. Turner JE, Brum PC. Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? Oxid Med Cell Longev. 2017;Article ID 4234765:18 pages. [DOI:10.1155/2017/4234765]
17. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. J Sport Health Sci. 2019;8(3):201-217. [DOI:10.1016/j.jshs.2018.09.009]
18. Rowiński R, Kozakiewicz M, Kędziora-Kornatowska K, Hübner-Woźniak E, Kędziora J. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity. Exp Gerontol. 2013;48(11):1141-6. [DOI:10.1016/j.exger.2013.07.010]
19. Gonçalves CAM, Dantas PMS, Dos Santos IK, Dantas M, da Silva DCP, Cabral BGAT, et al. Effect of Acute and Chronic Aerobic Exercise on Immunological Markers: A Systematic Review. Front Physiol. 2020;10:1602. [DOI:10.3389/fphys.2019.01602]
20. Yıldızgören MT. How Exercise May Affect the Immune System Against COVID-19? Turkish Journal of Sports Medicine. 2020;55(2):186-7. [DOI:10.5152/tjsm.2020.189]
21. Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients. 2020;12(3):622. [DOI:10.3390/nu12030622]
22. Bartlett DB, Fox O, McNulty CL, Greenwood HL, Murphy L, Sapey E, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016;56:12-20. [DOI:10.1016/j.bbi.2016.02.024]
23. Bartlett DB, Willis LH, Slentz CA, Hoselton A, Kelly L, Huebner JL, et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study. Arthritis Res Ther. 2018;20(1):127. [DOI:10.1186/s13075-018-1624-x]
24. Brown WM, Davison GW, McClean CM, Murphy MH. A Systematic Review of the Acute Effects of Exercise on Immune and Inflammatory Indices in Untrained Adults. Sports Med Open. 2015;1(1):35. [DOI:10.1186/s40798-015-0032-x]
25. Isaacs AW, Macaluso F, Smith C, Myburgh KH. C-Reactive Protein Is Elevated Only in High Creatine Kinase Responders to Muscle Damaging Exercise. Front Physiol. 2019;10:86. [DOI:10.3389/fphys.2019.00086]
26. Popovic LM, Mitic NR, Miric D, Bisevac B, Miric M, Popovic B. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxid Med Cell Longev. 2015;Article ID 295497:7 pages. [DOI:10.1155/2015/295497]
27. Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front Immunol. 2018;9:2187. [DOI:10.3389/fimmu.2018.02187]
28. Done AJ, Traustadóttir T. Aerobic exercise increases resistance to oxidative stress in sedentary older middle-aged adults. A pilot study. Age (Dordr). 2016;38(5-6):505-512. [DOI:10.1007/s11357-016-9942-x]
29. Seifi-Skishahr F, Damirchi A, Farjaminezhad M, Babaei P. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. Biochem Res Int. 2016;Article ID 3757623:9 pages. [DOI:10.1155/2016/3757623]
30. Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C. Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl Physiol Nutr Metab. 2015;40(6):582-9. [DOI:10.1139/apnm-2014-0417]
31. Pescatello LS, Arena R, Riebe D, Thompson PD, editors. ACSM's Guidelines for Exercise Testing and Prescription. 9th Ed. Philadelphia, USA: Wolters Kluwer/Lippincott Williams & Wilkins; 2014.
32. Queensland Health Guideline: Exercise Stress Testing. Version No.: 1.0 Qeensland Government. Document Number # QH-GDL-392:2013 2012. 2012;15 pages.
33. Gönülateş S. Analysis of Difference between the VO2max Values in Field and Laboratory Tests. Universal Journal of Educational Research. 2018;6(9):1938-41. [DOI:10.13189/ujer.2018.060912]
34. Williams N. The Borg Rating of Perceived Exertion (RPE) scale. Occupational Medicine. 2017;67:404-5. [DOI:10.1093/occmed/kqx063]
35. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):1077-87. [DOI:10.1152/japplphysiol.00622.2016]
36. Suzuki K. Exhaustive Exercise-Induced Neutrophil-Associated Tissue Damage and Possibility of its Prevention. J Nanomedine Biotherapeutic Discov. 2017;7(2):156.
37. Neves PRDS, Tenório TRDS, Lins TA, Muniz MTC, Pithon-Curi TC, Botero JP, Do Prado WL. Acute effects of high- and low-intensity exercise bouts on leukocyte counts. J Exerc Sci Fit. 2015;13(1):24-8. [DOI:10.1016/j.jesf.2014.11.003]
38. Jamurtas AZ, Fatouros IG, Deli CK, Georgakouli K, Poulios A, Draganidis D, et al. The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J Sports Sci Med. 2018;17(3):501-508.
39. Ferrer MD, Capó X, Martorell M, Busquets-Cortés C, Bouzas C, Carreres S, et al. Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status. Nutrients. 2018;10(11):1780. [DOI:10.3390/nu10111780]
40. Oya J, Nakagami T, Naito Y, Endo Y, Uchigata Y. Association of Total and Differential White Blood Cell Counts with Physical Energy Expenditure. J Tokyo Wom Med Univ. 2017; 87(Extra 2):E207-E16.
41. Bartlett DB, Shepherd SO, Wilson OJ, Adlan AM, Wagenmakers AJM, Shaw CS, Lord JM. Neutrophil and Monocyte Bactericidal Responses to 10 Weeks of Low-Volume High-Intensity Interval or Moderate-Intensity Continuous Training in Sedentary Adults. Oxid Med Cell Longev. 2017;Article ID 8148742:12 pages. [DOI:10.1155/2017/8148742]
42. Syu GD, Chen HI, Jen CJ. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status. PLoS One. 2011;6(9):e24385. [DOI:10.1371/journal.pone.0024385]
43. Nunes-Silva A, Bernardes PT, Rezende BM, Lopes F, Gomes EC, Marques PE, et al. Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner. An intravital microscopy study. PLoS One. 2014;9(5):e96464. [DOI:10.1371/journal.pone.0096464]
44. Kawanishi N, Mizokami T, Niihara H, Yada K, Suzuki K. Neutrophil depletion attenuates muscle injury after exhaustive exercise. Med Sci Sports Exerc. 2016(48):1917-24. [DOI:10.1249/MSS.0000000000000980]
45. Morozov VI, Pryatkin SA, Kalinski MI, Rogozkin VA. Effect of exercise to exhaustion on myeloperoxidase and lysozyme release from blood neutrophils. Eur J Appl Physiol. 2003;89(3-4):257-62 [DOI:10.1007/s00421-002-0755-5]
46. Fonseca RG, Kenny DA, McGivney BA, Murphy BA, Hill EW, Katz LM. Effect of training on plasma Myeloperoxidase concentrations measured before and following intense exercise in Thoroughbred racehorses. Comparative Exercise Physiology. 2016;12(1):17-25. [DOI:10.3920/CEP150028]
47. Morozov VI, Tsyplenkov PV, Golberg N D, Kalinski MI. The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. Eur J Appl Physiol. 2006;97:716-22. [DOI:10.1007/s00421-006-0193-x]
48. Holz O, Roepcke S, Watz H, Tegtbur U, Lahu G, Hohlfeld JM. Constant-load exercise decreases the serum concentration of myeloperoxidase in healthy smokers and smokers with COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:1393-402. [DOI:10.2147/COPD.S83269]
49. Fico BG, Whitehurst M, Slusher AL, Mock JT, Maharaj A, Dodge KM, et. al. The comparison of acute high-intensity interval exercise vs. continuous moderate-intensity exercise on plasma calprotectin and associated inflammatory mediator. Physiol Behav. 2018;183:27-32. [DOI:10.1016/j.physbeh.2017.10.015]
50. van de Vyver M, Engelbrecht L, Smith C, Myburgh KH. Neutrophil and monocyte responses to downhill running: Intracellular contents of MPO, IL-6, IL-10, pstat3, and SOCS3. Scand J Med Sci Sports. 2016;26(6):638-47 [DOI:10.1111/sms.12497]
51. Bury TB, Pirnay F. Effect of Prolonged Exercise on Neutrophil Myeloperoxidase Secretion. Int J Sports Med. 1995;16(6):410- 2. [DOI:10.1055/s-2007-973029]
52. Davison G, Jones AW. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses. Appl Physiol Nutr Metab. 2015;40(3):298-301. [DOI:10.1139/apnm-2014-0396]
53. Bouzid MA, Filaire E, Matran R, Robin S, Fabre C. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int J Sports Med. 2018;39(1):21-28. [DOI:10.1055/s-0043-119882]
54. Kozakiewicz M, Rowiński R, Kornatowski M, Dąbrowski A, Kędziora-Kornatowska K, Strachecka A. Relation of Moderate Physical Activity to Blood Markers of Oxidative Stress and Antioxidant Defense in the Elderly. Oxid Med Cell Longev. 2019;Article ID 5123628:7 pages. [DOI:10.1155/2019/5123628]
55. Goutianos G, Margaritelis NV, Sparopoulou T, Veskoukis AS, Vrabas IS, Paschalis V, et al. Chronic administration of plasma from exercised rats to sedentary rats does not induce redox and metabolic adaptations. Physiol Sci. 2020;70(3):10 pages. [DOI:10.1186/s12576-020-00737-2]
56. Ramez M, Nasirinezhad F, Rajabi H, Aboutaleb N, Naderi N. Short-term exercise training increases plasma levels of klotho and total antioxidant capacity in male Wistar rats. Journal of Shahrekord University of Medical Sciences. 2019;21(1):25-30. [DOI:10.34172/jsums.2019.05]
57. Park SY, Kwak YS. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J Exerc Rehab. 2016;12(2):113-7. [DOI:10.12965/jer.1632598.299]
58. Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A, López LC, Casuso RA. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly. Redox Biol. 2017;13:477-481. [DOI:10.1016/j.redox.2017.07.009]
59. Nocella C, Cammisotto V, Pigozzi F, Borrione P, Fossati C, D'Amico A, et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes' Health. Nutrients. 2019;11(6):1353. [DOI:10.3390/nu11061353]
60. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, et al. Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metab. 2017 Feb 7;25(2):301-311. [DOI:10.1016/j.cmet.2016.11.004]
61. Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal. 2020;Epub ahead of print. PMID: 32174127(Available online at https://pubmed.ncbi.nlm.nih.gov/32174127/). [DOI:10.1089/ars.2019.7949]
62. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019;10:42:9 pages. [DOI:10.3389/fphys.2019.00042]
63. Chen RR, Fan XH, Chen G, Zeng GW, Xue YG, Liu XT, Wang CY. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/TGFb1/Smad2/3 signaling axis. Chem Biol Interact 2019;302:11-21. [DOI:10.1016/j.cbi.2019.01.031]
64. Kitaoka Y, Takeda K, Tamura Y, Hatta H. Lactate administration increases mRNA expression of PGC-1a and UCP3 in mouse skeletal muscle. Appl Physiol Nutr Metab. 2016;41(6):695-8. [DOI:10.1139/apnm-2016-0016]
65. Thirupathi A, Pinho, RA. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem. 2018;74(3):359-67. [DOI:10.1007/s13105-018-0633-1]
66. Abbasi S, Avandi SM, Haghshenas R. The effect of eight weeks Concurrent training on plasma levels of NRF2 in young men. Journal of Applied Health Studies in Sport Physiology. 2018;5(2):78-83. [Full Text in Persian].
67. Wiecek M, Maciejczyk M, Szymura J, Szygula Z. Effect of maximal-intensity exercise on systemic nitro-oxidative stress in men and women. Redox Report. 2017;22(4):176-82. [DOI:10.1080/13510002.2016.1169622]
68. Carraro E, Schilirò T, Biorci F, Romanazzi V, Degan R, Buonocore D, et al. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int J Environ Res Public Health. 2018;15(6):1152. [DOI:10.3390/ijerph15061152]
69. Silveira LS, Antunes Bde M, Minari AL, Dos Santos RV, Neto JC, Lira FS. Macrophage Polarization: Implications on Metabolic Diseases and the Role of Exercise. Crit Rev Eukaryot Gene Expr 2016;26:115-32. [DOI:10.1615/CritRevEukaryotGeneExpr.2016015920]
70. Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer's Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front Immunol 2018;8:1974. [DOI:10.3389/fimmu.2017.01974]
71. Vida C, de Toda IM, Cruces J, Garrido A, Gonzalez-Sanchez M, De la Fuente M. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol 2017;12:423-437. [DOI:10.1016/j.redox.2017.03.005]
72. Terra R, da Silva SAG, Pinto VS, Dutra PML. Effect of exercise on the immune system: cell response, adaptation and signaling. Rev Bras Med Esport 2012;18:208-2014. [DOI:10.1590/S1517-86922012000300015]
73. Xie K, Varatnitskaya M, Maghnouj A, Bader V, Winklhofer KF, Hahn S, Leichert LI. Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells. Redox Biol 2020;28:101344. [DOI:10.1016/j.redox.2019.101344]
74. Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018;23:2561. [DOI:10.3390/molecules23102561]
75. Vlasova II, Sokolov AV, Kostevich VA, Mikhalchik EV, Vasilyev VB. Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines. Biochemistry (Mosc) 2019;84:652-662. [DOI:10.1134/S0006297919060087]
76. Ren M, Zhou K, He L, Lin W. Mitochondria and lysosome-targetable fluorescent probes for HOCl: recent advances and perspectives. J Mater Chem B 2018;6:1716-1733. [DOI:10.1039/C7TB03337K]
77. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med Sci (Basel) 2018;6:33. [DOI:10.3390/medsci6020033]
78. Groussard C, Maillard F, Vazeille E, Barnich N, Sirvent P, Otero YF, et al. Tissue-Specific Oxidative Stress Modulation by Exercise: A Comparison between MICT and HIIT in an Obese Rat Model. Oxid Med Cell Longev 2019;2019:1965364. [DOI:10.1155/2019/1965364]
79. Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev 2011;7:106-25. [DOI:10.2174/157339911794940729]
80. Sies H. On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology 2018;7:122-126. [DOI:10.1016/j.cotox.2018.01.002]
81. Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta 2019;491:85-90. [DOI:10.1016/j.cca.2019.01.021]
82. Turner JE, Brum PC. Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? Oxid Med Cell Longev.2017;2017:4234765. [DOI:10.1155/2017/4234765]
83. Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. J Sport Health Sci 2019;8:201-217. [DOI:10.1016/j.jshs.2018.09.009]
84. Rowiński R, Kozakiewicz M, Kędziora-Kornatowska K, Hübner-Woźniak E, Kędziora J. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity. Exp Gerontol 2013;48:1141-6. [DOI:10.1016/j.exger.2013.07.010]
85. Gonçalves CAM, Dantas PMS, Dos Santos IK, Dantas M, da Silva DCP, Cabral BGAT, et al. Effect of Acute and Chronic Aerobic Exercise on Immunological Markers: A Systematic Review. Front Physiol 2020;10:1602. [DOI:10.3389/fphys.2019.01602]
86. Yıldızgören MT. How Exercise May Affect the Immune System Against COVID-19? Turk J Sports Med 020;55:186-7. [DOI:10.5152/tjsm.2020.189]
87. Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020;12:622. [DOI:10.3390/nu12030622]
88. Bartlett DB, Fox O, McNulty CL, Greenwood HL, Murphy L, Sapey E, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun 2016;56:12-20. [DOI:10.1016/j.bbi.2016.02.024]
89. Bartlett DB, Willis LH, Slentz CA, Hoselton A, Kelly L, Huebner JL, et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study. Arthritis Res Ther 2018;20:127. [DOI:10.1186/s13075-018-1624-x]
90. Brown WM, Davison GW, McClean CM, Murphy MH. A Systematic Review of the Acute Effects of Exercise on Immune and Inflammatory Indices in Untrained Adults. Sports Med Open 2015;1:35. [DOI:10.1186/s40798-015-0032-x]
91. Isaacs AW, Macaluso F, Smith C, Myburgh KH. C-Reactive Protein Is Elevated Only in High Creatine Kinase Responders to Muscle Damaging Exercise. Front Physiol 2019;10:86. [DOI:10.3389/fphys.2019.00086]
92. Popovic LM, Mitic NR, Miric D, Bisevac B, Miric M, Popovic B. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxid Med Cell Longev 2015;2015:295497. [DOI:10.1155/2015/295497]
93. Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging?. Front Immunol 2018;9:2187. [DOI:10.3389/fimmu.2018.02187]
94. Done AJ, Traustadóttir T. Aerobic exercise increases resistance to oxidative stress in sedentary older middle-aged adults. A pilot study. Age (Dordr) 2016;38:505-512. [DOI:10.1007/s11357-016-9942-x]
95. Seifi-Skishahr F, Damirchi A, Farjaminezhad M, Babaei P. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. Biochem Res Int 2016;2016:3757623. [DOI:10.1155/2016/3757623]
96. Bouzid MA, Hammouda O, Matran R, Robin S, Fabre C. Influence of physical fitness on antioxidant activity and malondialdehyde level in healthy older adults. Appl Physiol Nutr Metab 2015;40:582-9. [DOI:10.1139/apnm-2014-0417]
97. Pescatello LS, Arena R, Riebe D, Thompson PD, Editors. ACSM's Guidelines for Exercise Testing and Prescription. 9th Ed. Philadelphia, USA: Wolters Kluwer/Lippincott Williams & Wilkins; 2014.
98. Queensland Health. Queensland Health: Exercise Stress Testing. Document Number # QH-GDL-392:2013. Available from: https://www.health.qld.gov.au/__data/assets/pdf_file/0024/147624/qh-gdl-392.pdf
99. Gönülateş S. Analysis of Difference between the VO2max Values in Field and Laboratory Tests. Univers J Educ Res 2018;6:1938-41. [DOI:10.13189/ujer.2018.060912]
100. Williams N. The Borg Rating of Perceived Exertion (RPE) scale. Occup Med 2017;67:404-405. [DOI:10.1093/occmed/kqx063]
101. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol 2017;122:1077-87. [DOI:10.1152/japplphysiol.00622.2016]
102. Suzuki K. Exhaustive Exercise-Induced Neutrophil-Associated Tissue Damage and Possibility of its Prevention. J Nanomedine Biotherapeutic Discov 2017;7:156.
103. Neves PRDS, Tenório TRDS, Lins TA, Muniz MTC, Pithon-Curi TC, Botero JP, Do Prado WL. Acute effects of high- and low-intensity exercise bouts on leukocyte counts. J Exerc Sci Fit 2015;13:24-8. [DOI:10.1016/j.jesf.2014.11.003]
104. Jamurtas AZ, Fatouros IG, Deli CK, Georgakouli K, Poulios A, Draganidis D, et al. The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J Sports Sci Med 2018;17:501-508.
105. Ferrer MD, Capó X, Martorell M, Busquets-Cortés C, Bouzas C, Carreres S, et al. Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status. Nutrients 2018;10:1780. [DOI:10.3390/nu10111780]
106. Oya J, Nakagami T, Naito Y, Endo Y, Uchigata Y. Association of Total and Differential White Blood Cell Counts with Physical Energy Expenditure. J Tokyo Wom Med Univ 2017; 87: 207-16.
107. Bartlett DB, Shepherd SO, Wilson OJ, Adlan AM, Wagenmakers AJM, Shaw CS,et al. Neutrophil and Monocyte Bactericidal Responses to 10 Weeks of Low-Volume High-Intensity Interval or Moderate-Intensity Continuous Training in Sedentary Adults. Oxid Med Cell Longev 2017;2017:8148742. [DOI:10.1155/2017/8148742]
108. Syu GD, Chen HI, Jen CJ. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status. PLoS One 2011;6:e24385. [DOI:10.1371/journal.pone.0024385]
109. Nunes-Silva A, Bernardes PT, Rezende BM, Lopes F, Gomes EC, Marques PE, et al. Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner. An intravital microscopy study. PLoS One 2014;9:e96464. [DOI:10.1371/journal.pone.0096464]
110. Kawanishi N, Mizokami T, Niihara H, Yada K, Suzuki K. Neutrophil depletion attenuates muscle injury after exhaustive exercise. Med Sci Sports Exerc 2016:1917-24. [DOI:10.1249/MSS.0000000000000980]
111. Morozov VI, Pryatkin SA, Kalinski MI, Rogozkin VA. Effect of exercise to exhaustion on myeloperoxidase and lysozyme release from blood neutrophils. Eur J Appl Physiol 2003;89:257-62. [DOI:10.1007/s00421-002-0755-5]
112. Fonseca RG, Kenny DA, McGivney BA, Murphy BA, Hill EW, Katz LM. Effect of training on plasma Myeloperoxidase concentrations measured before and following intense exercise in Thoroughbred racehorses. Comp Exerc Physiol 2016;12:17-25. [DOI:10.3920/CEP150028]
113. Morozov VI, Tsyplenkov PV, Golberg N D, Kalinski MI. The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats. Eur J Appl Physiol 2006;97:716-22. [DOI:10.1007/s00421-006-0193-x]
114. Holz O, Roepcke S, Watz H, Tegtbur U, Lahu G, Hohlfeld JM. Constant-load exercise decreases the serum concentration of myeloperoxidase in healthy smokers and smokers with COPD. Int J Chron Obstruct Pulmon Dis 2015;10:1393-402. [DOI:10.2147/COPD.S83269]
115. Fico BG, Whitehurst M, Slusher AL, Mock JT, Maharaj A, Dodge KM, et. al. The comparison of acute high-intensity interval exercise vs. continuous moderate-intensity exercise on plasma calprotectin and associated inflammatory mediator. Physiol Behav 2018;183:27-32. [DOI:10.1016/j.physbeh.2017.10.015]
116. van de Vyver M, Engelbrecht L, Smith C, Myburgh KH. Neutrophil and monocyte responses to downhill running: Intracellular contents of MPO, IL-6, IL-10, pstat3, and SOCS3. Scand J Med Sci Sports 2016;26:638-47. [DOI:10.1111/sms.12497]
117. Bury TB, Pirnay F. Effect of Prolonged Exercise on Neutrophil Myeloperoxidase Secretion. Int J Sports Med 1995;16:410- 2. [DOI:10.1055/s-2007-973029]
118. Davison G, Jones AW. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses. Appl Physiol Nutr Metab 2015;40:298-301. [DOI:10.1139/apnm-2014-0396]
119. Bouzid MA, Filaire E, Matran R, Robin S, Fabre C. Lifelong Voluntary Exercise Modulates Age-Related Changes in Oxidative Stress. Int J Sports Med 2018;39:21-28. [DOI:10.1055/s-0043-119882]
120. Kozakiewicz M, Rowiński R, Kornatowski M, Dąbrowski A, Kędziora-Kornatowska K, Strachecka A. Relation of Moderate Physical Activity to Blood Markers of Oxidative Stress and Antioxidant Defense in the Elderly. Oxid Med Cell Longev 2019;2019:5123628. [DOI:10.1155/2019/5123628]
121. Goutianos G, Margaritelis NV, Sparopoulou T, Veskoukis AS, Vrabas IS, Paschalis V, et al. Chronic administration of plasma from exercised rats to sedentary rats does not induce redox and metabolic adaptations. J Physiol Sci 2020;70:3. [DOI:10.1186/s12576-020-00737-2]
122. Ramez M, Nasirinezhad F, Rajabi H, Aboutaleb N, Naderi N. Short-term exercise training increases plasma levels of klotho and total antioxidant capacity in male Wistar rats. J Shahrekord Uni Med Sci 2019;21:25-30. [DOI:10.34172/jsums.2019.05]
123. Park SY, Kwak YS. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J Exerc Rehab 2016;12:113-7. [DOI:10.12965/jer.1632598.299]
124. Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A, López LC, Casuso RA. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly. Redox Biol 2017;13:477-481. [DOI:10.1016/j.redox.2017.07.009]
125. Nocella C, Cammisotto V, Pigozzi F, Borrione P, Fossati C, D'Amico A, et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes' Health. Nutrients 2019;11:1353. [DOI:10.3390/nu11061353]
126. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, et al. Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle. Cell Metab 2017;25:301-311. [DOI:10.1016/j.cmet.2016.11.004]
127. Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal 2020;33:745-760. [DOI:10.1089/ars.2019.7949]
128. Lee JH, Jun HS. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol 2019;10:42:9. [DOI:10.3389/fphys.2019.00042]
129. Chen RR, Fan XH, Chen G, Zeng GW, Xue YG, Liu XT, Wang CY. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/TGFb1/Smad2/3 signaling axis. Chem Biol Interact 2019;302:11-21. [DOI:10.1016/j.cbi.2019.01.031]
130. Kitaoka Y, Takeda K, Tamura Y, Hatta H. Lactate administration increases mRNA expression of PGC-1a and UCP3 in mouse skeletal muscle. Appl Physiol Nutr Metab 2016;41:695-8. [DOI:10.1139/apnm-2016-0016]
131. Thirupathi A, Pinho, RA. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem 2018;74:359-67. [DOI:10.1007/s13105-018-0633-1]
132. Abbasi S, Avandi SM, Haghshenas R. The effect of eight weeks Concurrent training on plasma levels of NRF2 in young men. Journal of Applied Health Studies in Sport Physiology (JAHSSP) 2018;5:78-83. [In Persian]
133. Wiecek M, Maciejczyk M, Szymura J, Szygula Z. Effect of maximal-intensity exercise on systemic nitro-oxidative stress in men and women. Redox Rep 2017;22:176-82. [DOI:10.1080/13510002.2016.1169622]
134. Carraro E, Schilirò T, Biorci F, Romanazzi V, Degan R, Buonocore D, et al. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int J Environ Res Public Health 2018;15:1152. [DOI:10.3390/ijerph15061152]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 4 (WINTER 2021) Back to browse issues page