:: دوره 31، شماره 4 - ( زمستان 1400 ) ::
جلد 31 شماره 4 صفحات 412-406 برگشت به فهرست نسخه ها
تعیین فراوانی ژن‌های همولیزین آلفا، بتا و دلتا در استافیلوکوکوس اورئوس‌های مقاوم به آنتی‌بیوتیک جدا شده از نمونه‌های زخم و ادرار بیماران
مینا آقاصفی1 ، زهرا طهماسبی فرد 2
1- کارشناس ارشد بیوتکنولوژی میکروبی، گروه زیست شناسی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
2- دانشیار زیست شناسی سلولی و مولکولی، گروه زیست شناسی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران ، ztahmasebifard@yahoo.com
چکیده:   (1565 مشاهده)
سابقه و هدف: استافیلوکوکوس اورئوس یکی از باکتری­های پاتوژن است که با فاکتورهای ویرولانس نظیر توکسین­ها و پپتیدها می­تواند غشاء سلول­های میزبان را هدف قرار دهد. در این تحقیق میزان فراوانی ژن­های همولیزین آلفا، بتا و دلتا در استافیلوکوک اورئوس­های مقاوم به آنتی بیوتیک­های جدا شده از نمونه‌های ادرار و زخم بیماران مورد ارزیابی قرار گرفت.
روش بررسی: در این مطالعه ۱۰۰ جدایه استافیلوکوکوس اورئوس مقاوم به آنتی­بیوتیک (تتراسایکلین، پنی­سیلین، جنتامایسین، کوتریموکسازول، توبرامایسین و سیپروفلوکساسین) از نمونه­های زخم و ادرار بیماران مراجعه کننده به آزمایشگاههای تشخیص طبی به کمک تست­های تشخیصی جداسازی شد. سپس حساسیت آنتی­بیوتیکی آنها به روش دیسک دیفیوژن بر اساس جدول CLSI تعیین شد. بعد از بررسی MIC و MBC نمونه­ها، کشت تک کلنی برای نمونه­ها انجام گرفت و با استفاده از کیت تجاری، DNA آنها استخراج شد. با طراحی پرایمر­های اختصاصی، ژن­های همولیزین آلفا، بتا و دلتا در نمونه­ها تکثیر شدند و نتایج حاصله با آزمون­های آماری تحلیل شد. 
یافته­ ها: در جدایه­های استافیلوکوکوس اورئوس بیشترین مقاومت در برابر کوتریموکسازول با 63 % و بیشترین حساسیت به پنی سیلین با 53 % دیده شد. بین مقاومت به آنتی­بیوتیک­های تتراسایکلین و کوتریموکسازول و سن رابطه آماری معنی­داری دیده شد و همچنین سیپروفلوکساسین در زنان مقاومت بیشتری نسبت به مردان نشان داد. فراوانی ژن­های همولیزین در hla  91 %، hlb 96 % وhld  99 % مشاهده شد.
نتیجه­گیری: به نظر می­رسد آنتی­بیوتیک پنی سیلین با 53% حساسیت، کاندید بهتری نسبت به سایر آنتی بیوتیک­هاست و فراوانی زیاد ژن­های همولیزین باید به عنوان یک نگرانی مهم در جامعه پزشکی در نظر گرفته شود..
واژه‌های کلیدی: آلفاهمولیزین، بتاهمولیزین، دلتا همولیزین، استافیلوکوکوس اورئوس
متن کامل [PDF 418 kb]   (1089 دریافت)    
نيمه آزمايشي : موردي- شاهدي | موضوع مقاله: ميكروبيولوژي
دریافت: 1400/4/19 | پذیرش: 1400/6/24
فهرست منابع
1. Foster, T.J., Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev, 2017. 41(3): p. 430-449. [DOI:10.1093/femsre/fux007]
2. Curtis, M.M. and V. Sperandio, A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol, 2011. 4(2): p. 133-8. [DOI:10.1038/mi.2010.89]
3. Kebaier, C., et al., Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis, 2012. 205(5): p. 807-17. [DOI:10.1093/infdis/jir846]
4. Wiseman, G.M., The hemolysins of Staphylococcus aureus. Bacteriol Rev, 1975. 39(4): p. 317-44. [DOI:10.1128/br.39.4.317-344.1975]
5. Wilke, G.A. and J. Bubeck Wardenburg, Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13473-8. [DOI:10.1073/pnas.1001815107]
6. Dumont, A.L., et al., Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol, 2011. 79(3): p. 814-25. [DOI:10.1111/j.1365-2958.2010.07490.x]
7. Burnside, K., et al., Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One, 2010. 5(6): p. e11071. [DOI:10.1371/journal.pone.0011071]
8. Ventura, C.L., et al., Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One, 2010. 5(7): p. e11634. [DOI:10.1371/journal.pone.0011634]
9. Ira and L.J. Johnston, Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta, 2008. 1778(1): p. 185-97. [DOI:10.1016/j.bbamem.2007.09.021]
10. Verdon, J., et al., delta-hemolysin, an update on a membrane-interacting peptide. Peptides, 2009. 30(4): p. 817-23. [DOI:10.1016/j.peptides.2008.12.017]
11. Zhang, L., et al., Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China. BMC Vet Res, 2018. 14(1): p. 63. [DOI:10.1186/s12917-018-1374-7]
12. Vandenesch, F., G. Lina, and T. Henry, Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol, 2012. 2: p. 12. [DOI:10.3389/fcimb.2012.00012]
13. Eslami, G., et al., Identification of Virulence Genes in Staphylococcus aureus Isolates Segregated from Children's Wounds. Pejouhesh dar Pezeshki (Research in Medicine), 2019. 43(1): p. 52-57.
14. Yilmaz, E.S. and O. Aslantas, Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Med, 2017. 10(11): p. 1059-1064. [DOI:10.1016/j.apjtm.2017.10.003]
15. Nourbakhsh, F. and H. Momtaz, Detection of antibiotic resistance patterns in Staphylococcus aureus strains isolated from patients admitted to Isfahan hospitals during 2014-2015. Feyz Journal of Kashan University of Medical Sciences, 2015. 19(4): p. 356-363.
16. Parhizgari, N., S. Moosavian, and A. Sharifi, Antibiotic resistant pattern of methicillin resistant and sensitive Staphylococcus aureus isolated from patients durining 2009-2010, Ahvaz, Iran. Armaghane danesh, 2013. 18(9): p. 757-767.
17. Akhi, M.T., et al., Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control, 2015. 10: p. Doc02.
18. Shittu, A.O., et al., Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol, 2011. 11: p. 92. [DOI:10.1186/1471-2180-11-92]
19. Rasooli, H. and E. Ghorbanalinezhad, Isolation and Identification of Methicillin Resistant Staphylococcus aureus Based on hla , lukED, sei, and hlg Virulence Genes in Patients with Diabetic Foot Infection in Mazandaran Province. Iranian Journal of Medical Microbiology, 2018. 11(6): p. 192-202.
20. Arash Ghasem Azizi, Haghkhah Masoud, Pourtaghi H., Shirazinezhad A., Naserpour F. Phenotypic and Genotypic Analysis of Haemolysin Genes of Staphylococcus aureus isolated from Subclinical Mastitis in Savojbolagh County, Alborz Province. Veterinary Journal (Pajouhesh & Sazandegi. 2016; 114: 14-20.
21. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2017;41: 430-449. [DOI:10.1093/femsre/fux007]
22. Curtis, MM, Sperandio V. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol 2011;4: 133-8. [DOI:10.1038/mi.2010.89]
23. Kebaier Ch, Chamberland RR, Allen IC, Gao X , Broglie PM , Hal JD, Jania C, et al. Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis 2012;205:807-17. [DOI:10.1093/infdis/jir846]
24. Wiseman, GM. The hemolysins of Staphylococcus aureus. Bacteriol Rev 1975;39:317-44. [DOI:10.1128/br.39.4.317-344.1975]
25. Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A 2010;107:13473-8. [DOI:10.1073/pnas.1001815107]
26. Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, et al. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 2011;79:814-25. [DOI:10.1111/j.1365-2958.2010.07490.x]
27. Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, et al. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 2010;5:e11071. [DOI:10.1371/journal.pone.0011071]
28. Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD, DeLeo FR. Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 2010;5:e11634. [DOI:10.1371/journal.pone.0011634]
29. Ira, Johnston LJ. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 2008;1778:185-97. [DOI:10.1016/j.bbamem.2007.09.021]
30. Verdon J, Girardin N, Lacombe C, Berjeaud JM, Héchard Y. delta-hemolysin, an update on a membrane-interacting peptide. Peptides 2009;30:817-23. [DOI:10.1016/j.peptides.2008.12.017]
31. Zhang L, Gao J, Barkema HW, Ali T, Liu G, Deng Y, et al. Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China. BMC Vet Res 2018;14:63. [DOI:10.1186/s12917-018-1374-7]
32. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2012;2:12. [DOI:10.3389/fcimb.2012.00012]
33. Karasartova D, Cavusoglu ZB, Turegun B, Ozsan MT, Şahin F. Identification of virulence genes carried by bacteriophages obtained from clinically isolated methicillin-resistant Staphylococcus aureus. Acta Microbiol Immunol Hung 2016;63:433-447. [DOI:10.1556/030.63.2016.026]
34. Yılmaz EŞ, Aslantaş Ö. Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Med 2017;10:1059-1064. [DOI:10.1016/j.apjtm.2017.10.003]
35. Goneau L W, Delport J, Langlois L, Poutanen S M, Razvi H, Reid G, et al. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS Microbes 2020:1; 1-14. [DOI:10.1093/femsmc/xtaa004]
36. Nourbakhsh, F, Momtaz H. Detection of antibiotic resistance patterns in Staphylococcus aureus strains isolated from patients admitted to Isfahan hospitals during 2014-2015. Feyz 2015;19: 356-363. [In Persian]
37. Parhizgari, N., S. Moosavian, and A. Sharifi. Antibiotic resistant pattern of methicillin resistant and sensitive Staphylococcus aureus isolated from patients durining 2009-2010. Armaghane Danesh 2013;18: 757-767. [In Persian]
38. Akhi MT, Ghotaslou R, Asgharzadeh M, Varshochi M, Pirzadeh T, Memar MY, et al. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control 2015;10: 02.
39. Shittu AO, Okon K, Adesida, S. Omotayo Oyedara, Witte W, Strommenger B, Layer F, et al. Antibiotic resistance and molecular epidemiology of Staphylococcus aureusin Nigeria. BMC Microbiol 2011;11: 92. [DOI:10.1186/1471-2180-11-92]
40. Rasooli, H. and E. Ghorbanalinezhad. Isolation and Identification of Methicillin Resistant Staphylococcus aureus Based on hla , lukED, sei, and hlg Virulence Genes in Patients with Diabetic Foot Infection in Mazandaran Province. Iran J Med Microb 2018;11:192-202. [In Persian]
41. Ghasem Azizi A, Masoud H, Pourtaghi H., Shirazinezhad A., Naserpour F. Phenotypic and Genotypic Analysis of Haemolysin Genes of Staphylococcus aureus isolated from Subclinical Mastitis in Savojbolagh County, Alborz Province. Vet J 2016; 114: 14-20. [In Persian]
42. Nasaj M, Saeidi Z, Asghari B, Roshanaei G, Arabestani MR. Identification of hemolysin encoding genes and their association with antimicrobial resistance pattern among clinical isolates of coagulase-negative Staphylococci. BMC Res Notes 2020;13:68. [DOI:10.1186/s13104-020-4938-0]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 31، شماره 4 - ( زمستان 1400 ) برگشت به فهرست نسخه ها