:: Volume 32, Issue 2 (summer 2022) ::
MEDICAL SCIENCES 2022, 32(2): 111-122 Back to browse issues page
A review of methods to increase the stability of recombinant pharmaceutical proteins during the production and storage process
Somayeh Abolghasemi-Dehaghani1 , Mohsen Gharanfoli 2, Mehran Habibi-Rezaei3 , Ramezan Ali Khavari-Nejad1
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran-Iran , mgharanfoli@royaninstitute.org
3- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
Abstract:   (1457 Views)
The production of biotechnological drug proteins plays an important role against disease. The process of producing drug recombinant proteins is not a direct path, because it requires a lot of work and on the other hand, one of the important and significant aspects in the production of proteins is the discussion of their stability and solubility during the expression and purification process. Proteins are stable only in a limited range of temperature and acidity conditions and are highly susceptible to physical and chemical degradation. Today, various solutions have been proposed to increase the solubility and stability of proteins, including guided changes in the protein molecule, and optimization of the instructions for expression, purification and solubility of proteins, which is often the first approach that is not possible. This review article provides solutions to increase the stability of proteins at different levels, including the study of the effect of expression construct design, protein tags and sequences on stability, optimal host cell selection and improved expression conditions. The effect of optimizing buffers used in pharmaceutical formulations such as selecting appropriate amino acids and osmolytes to increase protein stability and how sugars and polyols affect the stability of recombinant pharmaceutical proteins is also investigated.
 
Keywords: Therapeutic proteins, Protein stability, Construct design, Formulation, Improvement of expression conditions
Full-Text [PDF 342 kb]   (1643 Downloads)    
Semi-pilot: Review | Subject: Pharmacology
Received: 2021/09/12 | Accepted: 2021/11/10 | Published: 2022/07/1
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید1. Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, Pavlova M, et al. Strategies for structural proteomics of prokaryotes: Quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Proteins 2003;50:392-399. [DOI:10.1002/prot.10282]
2. Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. Acta Crystallogr F Struct Biol Commun 2016, 72:72-95. [DOI:10.1107/S2053230X15024619]
3. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013;81:136-47. [DOI:10.1111/cbdd.12055]
4. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 2008;7:21-39. [DOI:10.1038/nrd2399]
5. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci 2004;93:2184-204. [DOI:10.1002/jps.20125]
6. Nayak AK. Advances in therapeutic protein production and delivery. Int J Pharm Pharm Sci 2010; 2: 2.
7. Sun Jun, Shengqi Rao, Yujie Su, Rongrong Xu,Yan-jun Yang. Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf A: Physicochem Eng Asp 2011;389: 97-103. [DOI:10.1016/j.colsurfa.2011.08.044]
8. Sun YL, Patel A, Kumar P, Chen ZS. Role of ABC transporters in cancer chemotherapy. Chin J Cancer 2012;31:51-7. [DOI:10.5732/cjc.011.10466]
9. Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif 2014;94:22-32. [DOI:10.1016/j.pep.2013.10.016]
10. Akash MS, Rehman K, Chen S. IL-1Ra and its delivery strategies: inserting the association in perspective. Pharm Res 2013, 30:2951-2966. [DOI:10.1007/s11095-013-1118-0]
11. Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 2003, 316:223-231. [DOI:10.1016/S0003-2697(03)00059-9]
12. Bagby S, Tong KI, Ikura M. Optimization of protein solubility and stability for protein nuclear magnetic resonance. Methods Enzymol 2001, 339:20-41. [DOI:10.1016/S0076-6879(01)39307-2]
13. Cha KY, Chung HM, Lee DR, Kwon H, Chung MK, Park LS, et al. Obstetric outcome of patients with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer. Fertil Steril 2005; 83:1461-1465. [DOI:10.1016/j.fertnstert.2004.11.044]
14. Torosantucci R, Schoneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 2014;31:541-553. [DOI:10.1007/s11095-013-1199-9]
15. Bolen DW. Protein stabilization by naturally occurring osmolytes. Methods Mol Biol 2001;0168:17-36. [DOI:10.1385/1-59259-193-0:017]
16. Collins KD. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods. 2004;34:300-311. [DOI:10.1016/j.ymeth.2004.03.021]
17. Robertson AD, Murphy KP. Protein Structure and the Energetics of Protein Stability. Chem Rev 1997;97:1251-1268. [DOI:10.1021/cr960383c]
18. Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005;115:113-128. [DOI:10.1016/j.jbiotec.2004.08.004]
19. Spiegel H, Schinkel H, Kastilan R, Dahm P, Boes A, Scheuermayer M, et al. Optimization of a multi-stage, multi-subunit malaria vaccine candidate for the production in Pichia pastoris by the identification and removal of protease cleavage sites. Biotechnol Bioeng 2015;112:659-667. [DOI:10.1002/bit.25481]
20. Spencer ML, Theodosiou M, Noonan DJ. NPDC-1, a novel regulator of neuronal proliferation, is degraded by the ubiquitin/proteasome system through a PEST degradation motif. J Biol Chem 2004;279:37069-78. [DOI:10.1074/jbc.M402507200]
21. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986;234:364-8. [DOI:10.1126/science.2876518]
22. Hara K, Schmidt FI, Crow M, Brownlee GG. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 2006;80:7789-98. [DOI:10.1128/JVI.00600-06]
23. Sung D, Kang H. The N-terminal amino acid sequences of the firefly luciferase are important for the stability of the enzyme. Photochem Photobiol 1998;68:749-53. [DOI:10.1111/j.1751-1097.1998.tb02540.x]
24. Kopera E, Bal W, Lenarcic Zivkovic M, Dvornyk A, Kludkiewicz B, Grzelak K, Zhukov I, et al. Atomic resolution structure of a protein prepared by non-enzymatic His-tag removal. Crystallographic and NMR study of GmSPI-2 inhibitor. PLoS One 2014;9:e106936. [DOI:10.1371/journal.pone.0106936]
25. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995;177:4121-30. [DOI:10.1128/jb.177.14.4121-4130.1995]
26. Studier FW. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 1991;219:37-44. [DOI:10.1016/0022-2836(91)90855-Z]
27. Fischer S, Handrick R, Otte K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015;33:1878-96. [DOI:10.1016/j.biotechadv.2015.10.015]
28. Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, Van Voorhis WC. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One 2012;7:e52482. [DOI:10.1371/journal.pone.0052482]
29. Quistgaard EM. A disulfide polymerized protein crystal. Chem Commun (Camb) 2014; 50:14995-14997. [DOI:10.1039/C4CC07326F]
30. Reinhard L, Mayerhofer H, Geerlof A, Mueller-Dieckmann J, Weiss MS. Optimization of protein buffer cocktails using Thermofluor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013;69:209-214. [DOI:10.1107/S1744309112051858]
31. Ristic M, Rosa N, Seabrook SA, Newman J. Formulation screening by differential scanning fluorimetry: how often does it work? Acta Crystallogr F Struct Biol Commun 2015;71:1359-1364. [DOI:10.1107/S2053230X15012662]
32. Platts L, Falconer RJ. Controlling protein stability: Mechanisms revealed using formulations of arginine, glycine and guanidinium HCl with three globular proteins. Int J Pharm 2015;486:131-135. [DOI:10.1016/j.ijpharm.2015.03.051]
33. Akash MS, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol 2016;21:367-378. [DOI:10.3109/10837450.2014.999785]
34. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm 2017;114:288-295. [DOI:10.1016/j.ejpb.2017.01.024]
35. Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 2003;278:26458-65. [DOI:10.1074/jbc.M300815200]
36. Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci 2009;18:24-36. [DOI:10.1002/pro.3]
37. Xie G, Timasheff SN. Xie G, Timasheff SN. Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured then for the native protein. Protein Sci 1997;6:211-221. [DOI:10.1002/pro.5560060123]
38. Jain NK, Roy I. Trehalose and protein stability. Curr Protoc Protein Sci 2010;Chapter 4:Unit 4.9.
39. Olsson C, Jansson H, Swenson J. The Role of Trehalose for the Stabilization of Proteins. J Phys Chem B 2016;120:4723-31. [DOI:10.1021/acs.jpcb.6b02517]
40. Teilum K, Olsen JG, Kragelund BB. Protein stability, flexibility and function. Biochim Biophys Acta 2011;1814:969-76. [DOI:10.1016/j.bbapap.2010.11.005]
41. Betenbaugh MJ, Arden N, Nivitchanyong T. Cell Engineering Blocks Cell Stress and Improves Biotherapeutic Production. BioProcess J 2004; 3: 23-28. [DOI:10.12665/J32.Betenbaugh]
42. Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif 2014;94:22-32. [DOI:10.1016/j.pep.2013.10.016]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 2 (summer 2022) Back to browse issues page