[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 30, Issue 2 (summer 2020) ::
MEDICAL SCIENCES 2020, 30(2): 141-154 Back to browse issues page
Theoretical study of interaction between aspirine drug and Al-soped graphene nanostructure toward designing of suitable nanocarrier for drug delivery
Sara Farshad1 , Masoud Darvish Ganji 2
1- Student, Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Associate Professor, Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran , Ganji_md@yahoo.com
Abstract:   (2860 Views)
Background: In recent years, the unique physical and chemical properties of carbon nanostructures has led to many advancements in various fields, including chemistry and pharmaceuticals. Graphene is one of the carbon nanostructures which have attracted significant attention from researchers in adsorption and release of various drugs. Due to the high surface area of graphene, it can be used as a biological carrier in drug delivery. In this study, the interaction of aspirin with a graphene sheet doped with aluminum (graphene-aluminum) and possibility of stable complex formation between them were investigated using the theoretical study.
Materials and methods: The performance of carbon nanostructures for adsorption of aspirin on graphene-aluminum was evaluated using quantum computation. The calculations were performed using density functional theory modified with dispersion forces (DFT-D) and basic functions by using of ORCA software.
Results: Adsorption energy and electronic structure of aspirin /graphene-aluminum system were calculated. The measured adsorption energy and bond distance were −53.08 (kcal/mol) and 1.888 Å, respectively. The distribution of electron charge also indicated the continuity of electron clouds between drugs and nanostructure.
Conclusion: The results showed that a strong bond formed between aspirin and graphene-aluminum and the complex formed in the aqueous medium was thermodynamically stable. Regarding the possibility of stable complex formation, graphene-aluminum was expected to be suitable nanocarier for delivery of aspirin to target cells.
Keywords: Drug delivery, Aspirin, Graphene doped with aluminum, Energy adsorption, Density functional theory.
Full-Text [PDF 1267 kb]   (3554 Downloads)    
Semi-pilot: Experimental | Subject: Nanobiotechnology
Received: 2018/04/6 | Accepted: 2019/06/16 | Published: 2020/06/28
References
1. Shin C, Chase GG, Reneker DH. Recycled expanded polystyrene nanofibers applied in filter media. Colloids Surf 2005;262:211-215. [DOI:10.1016/j.colsurfa.2005.04.034]
2. Fan W, Zhang R, Teo BK, Aradi B, Frauenheim T. Prediction of energetically optimal single-walled carbon nanotubes for hydrogen physisorption. Appl Phys Lett 2009;95:013116. [DOI:10.1063/1.3158597]
3. Yang W, Moghaddam MJ, Taylor S, Bojarski B, Wieczorek L, Herrmann J, et al. Single-walled carbon nanotubes with DNA recognition. Chem Phys Lett 2007;443:169-72. [DOI:10.1016/j.cplett.2007.06.079]
4. Mohr S, Pochet P, Amsler M, Schaefer B, Sadeghi A, Genovese L, et al. Boron aggregation in the ground states of boron-carbon fullerenes. Phys Rev B Condens Matter 2014;89:041404. [DOI:10.1103/PhysRevB.89.041404]
5. Nicholas R. J, Mainwood A, Eaves L. Introduction. Carbon-based electronics: fundamentals and device applications. Colloids Surf 2007:12; 22-29.
6. ‌6. Brodie BC. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149: 249-259. ‌ [DOI:10.1098/rstl.1859.0013]
7. Jahanbani Sh, Benvidi A. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite. Mater Sci Eng 2016, 68: 1-8.‌ [DOI:10.1016/j.msec.2016.05.056]
8. Hasanzadeh M, Shadjou N, Mokhtarzadeh A, Ramezani M. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances. Mater Sci Eng 2016; 68: 482-493. ‌ [DOI:10.1016/j.msec.2016.06.023]
9. Wu W, Yu B, Wu H, Wang S, Xia Q, Ding Y. Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose. Mater Sci Eng 2017; 70: 430-437.‌ [DOI:10.1016/j.msec.2016.08.084]
10. Mutyala S, Mathiyarasu J. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode. Mater Sci Eng 2016; 69: 398-406.‌ [DOI:10.1016/j.msec.2016.06.069]
11. Wang D, Xu F, Hu J, Lin M. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine. Mater Sci Eng 2017; 71: 1086-89.‌ [DOI:10.1016/j.msec.2016.11.023]
12. Daneshvar L, Rounaghi G. H, Es' haghi Z, Chamsaz M, Tarahomi S. Fabrication a new modified electrochemical sensor based on Au-Pd bimetallic nanoparticle decorated graphene for citalopram determination. Mater Sci Eng 2016; 69: 653-660.‌ [DOI:10.1016/j.msec.2016.07.025]
13. Zhang D, Li L, Ma W, Chen X, Zhang Y. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng 2017; 70: 241-249.‌ [DOI:10.1016/j.msec.2016.08.078]
14. Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH. Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 2013; 1: 401-428.‌ [DOI:10.1039/C2TB00085G]
15. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2010; 22: 3906-3924.‌ [DOI:10.1002/adma.201001068]
16. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010;4:3181-86. [DOI:10.1021/nn1007176]
17. Davis ME, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82. [DOI:10.1038/nrd2614]
18. Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. Mater Sci Eng 2017;12: 48-52. [DOI:10.1016/j.msec.2017.03.196]
19. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9. [DOI:10.1126/science.1102896]
20. Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183-91. [DOI:10.1038/nmat1849]
21. Cheng TO. The history of aspirin. Tex Heart Inst J 2007; 34: 392-95.
22. Ferreira SH, Moncada S, Vane JR. Prostaglandins and the mechanism of analgesia produced by aspirin‐like drugs. Br J Pharmacol 197; 49: 86-97.‌‌ [DOI:10.1111/j.1476-5381.1973.tb08270.x]
23. Lewis Jr HD, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty III JE, et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina: results of a Veterans Administration Cooperative Study. N Engl J Med 1983; 309: 396-403.‌ [DOI:10.1056/NEJM198308183090703]
24. Lee Y, Kwon DG, Kim G, Kwon YK. Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes. Phys Chem Chem Phys 2017; 19: 8076-8081.‌ [DOI:10.1039/C6CP08122C]
25. Carstensen JT, Attarchi F, Hou XP. Decomposition of aspirin in the solid state in the presence of limited amounts of moisture. J Pharm Sci 1985; 74: 741-745.‌ [DOI:10.1002/jps.2600740709]
26. Al-Gohary OM, Al-Gamal SS, Hammad A, Molokhia AM. Effect of storage on tabletted microencapsulated aspirin granules. Int J Pharm 1989; 55: 47-52.‌ [DOI:10.1016/0378-5173(89)90275-5]
27. Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science 2002;297:787-92. [DOI:10.1126/science.1060928]
28. Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 2006;6:96-100. [DOI:10.1021/nl052145f]
29. Delgado JM, Rodes A, Orts JM. B3LYP and in situ ATR-SEIRAS study of the infrared behavior and bonding mode of adsorbed acetate anions on silver thin-film electrodes. ‎J Phys Chem C 2007;111):14476-83. [DOI:10.1021/jp073610v]
30. Parr RG. Density functional theory of atoms and molecules. In: Fukui K, Pullman B, Editors. Horizons of quantum chemistry. Dordrecht: Académie Internationale Des Sciences Moléculaires Quantiques / International Academy of Quantum Molecular Science; 1980. [DOI:10.1007/978-94-009-9027-2_2]
31. Ajima K, Yudasaka M, Murakami T, Maigné A, Shiba K, Iijima S. Carbon nanohorns as anticancer drug carriers. Mol Pharm 2005; 2: 475-480.‌ [DOI:10.1021/mp0500566]
32. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964;136:B864. [DOI:10.1103/PhysRev.136.B864]
33. Thorsten S, Rudolf J. How relevant are S= O and P= O double bonds for the description of the acid molecules H 2 SO 3, H 2 SO 4, and H 3 PO 4, respectively. Mol Mod Ann 2000;6:282-288.‌ [DOI:10.1007/PL00010730]
34. Pearson, Ralph G, Jon Songstad. "Application of the principle of hard and soft acids and bases to organic chemistry." J Am Chem Soc 1967; 89: 1827-36.‌ [DOI:10.1021/ja00984a014]
35. Pearson RG. The principle of maximum hardness. Acc Chem Res 1993; 26: 250-255.‌ [DOI:10.1021/ar00029a004]
36. Abbasi A, Jahanbin Sardroodi J. A First-principles study of the interaction of aspirin with nitrogen-doped TiO2 anatase nanoparticles. Nanomed Res J 2016;1:69-78.
37. Vessally E, Esrafili MD, Nurazar R, Nematollahi P, Bekhradnia A. A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Str Chem 2017;28:735-48. [DOI:10.1007/s11224-016-0858-y]
38. Datt A, Fields D, Larsen SC. An experimental and computational study of the loading and release of aspirin from zeolite HY. ‎J Phys Chem C 2012;116:21382-90. [DOI:10.1021/jp3067266]
39. Abbasi A, Nadimi E, Plänitz P, Radehaus C. Density functional study of the adsorption of aspirin on the hydroxylated (001) α-quartz surface. Science 2009;603:2502-6. [DOI:10.1016/j.susc.2009.06.004]
40. Ganji M. Density functional theory based treatment of amino acids adsorption on single-walled carbon nanotubes. Diam Relat Mater 2009;18:662-8. [DOI:10.1016/j.diamond.2008.11.021]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farshad S, Darvish Ganji M. Theoretical study of interaction between aspirine drug and Al-soped graphene nanostructure toward designing of suitable nanocarrier for drug delivery. MEDICAL SCIENCES 2020; 30 (2) :141-154
URL: http://tmuj.iautmu.ac.ir/article-1-1772-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 2 (summer 2020) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645