[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای داوران::
ثبت نام ::
اشتراک::
اطلاعات نمایه::
برای نویسندگان::
لینکهای مفید::
فرآیند چاپ::
پست الکترونیک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 31، شماره 1 - ( بهار1400 1400 ) ::
جلد 31 شماره 1 صفحات 38-29 برگشت به فهرست نسخه ها
استراتژی های تولید واکسن علیه COVID-19: چه زمانی یک واکسن موثر آماده خواهد شد؟
سید داور سیادت 1، ایوب رحیمی2 ، ابوالفضل فاتح3
1- بخش سل و تحقیقات ریوی، انستیتوپاستور ایران، تهران، ایران و مرکز تحقیقات میکروب شناسی، انستیتوپاستور ایران، تهران، ایران ، d.siadat@gmail.com
2- مرکز تحقیقات میکروب شناسی، انستیتوپاستور ایران، تهران، ایران
3- بخش سل و تحقیقات ریوی، انستیتوپاستور ایران، تهران، ایران و مرکز تحقیقات میکروب شناسی، انستیتوپاستور ایران، تهران، ایران
چکیده:   (2944 مشاهده)
یک اجماع در سطح جهانی وجود دارد که تولید یک واکسن موثر علیه SARS-CoV-2 می تواند احتمالاً موثرترین رویکرد برای کنترل پایدار بیماری همه گیر COVID-19 باشد. تلاش های فراوان و هماهنگی های عمومی منجر به رشد سریع تولید واکسن و شروع کارآزمایی های بالینی در سراسر جهان شده است. در این مقاله مروری، کاندیداهای واکسن علیه COVID-19 و همچنین چالشهای دریافت واکسن در مناطق مختلف مورد بررسی قرار گرفته است.
واژه‌های کلیدی: واکسن، SARS-CoV-2، COVID-19
متن کامل [PDF 339 kb]   (12684 دریافت)    
نيمه آزمايشي : مروري | موضوع مقاله: ويروس شناسي
دریافت: 1399/8/24 | پذیرش: 1399/10/14 | انتشار: 1400/1/4
فهرست منابع
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470-3. [DOI:10.1016/S0140-6736(20)30185-9]
2. Gorbalenya A, Baker S, Baric R, de Groot R, Drosten C, Gulyaeva A, et al. The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5: 536-544. 2020. [DOI:10.1038/s41564-020-0695-z]
3. Kim J-M, Chung Y-S, Jo HJ, Lee N-J, Kim MS, Woo SH, et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong public health and research perspectives. 2020;11(1):3. [DOI:10.24171/j.phrp.2020.11.1.02]
4. Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology. 2020:1-10. [DOI:10.1038/s41565-020-0737-y]
5. Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. British Medical Journal Publishing Group; 2020. [DOI:10.1136/bmj.m1375]
6. Sutton D, Fuchs K, D'alton M, Goffman D. Universal screening for SARS-CoV-2 in women admitted for delivery. New England Journal of Medicine. 2020;382 (22): 2163-2164. [DOI:10.1056/NEJMc2009316]
7. Chen W-H, Chag SM, Poongavanam MV, Biter AB, Ewere EA, Rezende W, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. Journal of pharmaceutical sciences. 2017;106(8):1961-70. [DOI:10.1016/j.xphs.2017.04.037]
8. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. [DOI:10.1126/science.abb2507]
9. Yuan M, Wu NC, Zhu X, Lee C-CD, So RT, Lv H, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020;368(6491):630-3. [DOI:10.1126/science.abb7269]
10. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8. [DOI:10.1126/science.abb2762]
11. Lucchese G. Epitopes for a 2019-nCoV vaccine. Cellular & molecular immunology. 2020;17(5):539-40. [DOI:10.1038/s41423-020-0377-z]
12. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell host & microbe. 2020. [DOI:10.1016/j.chom.2020.03.002]
13. Baruah V, Bose S. Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. Journal of medical virology. 2020;92(5):495-500. [DOI:10.1002/jmv.25698]
14. Enjuanes L, Zuñiga S, Castano-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular basis of coronavirus virulence and vaccine development. Advances in virus research. 96: Elsevier; 2016. p. 245-286. [DOI:10.1016/bs.aivir.2016.08.003]
15. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11(1):59. [DOI:10.3390/v11010059]
16. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology journal. 2019;16(1):1-22. [DOI:10.1186/s12985-019-1182-0]
17. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & molecular immunology. 2020:1-3. [DOI:10.1038/s41423-020-0374-2]
18. Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Frontiers in microbiology. 2020;11:298. [DOI:10.3389/fmicb.2020.00298]
19. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. 2020. [DOI:10.1101/2020.03.30.20047365]
20. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020; 17;369(6501):330-333. [DOI:10.1126/science.abb9983]
21. Banerjee A, Santra D, Maiti S. Energetics based epitope screening in SARS CoV-2 (COVID 19) spike glycoprotein by Immuno-informatic analysis aiming to a suitable vaccine development. J Transl Med. 2020; 10;18(1):281. [DOI:10.1186/s12967-020-02435-4]
22. Zhou D, Qi R, Zhang W, Tian X, Peng C. Identification of 22 N-glycosites on Spike Glycoprotein of SARS-CoV-2 and Accessible Surface Glycopeptide Motifs: Implications on Vaccination and Antibody Therapeutics. Glycobiology. 2020; 10;cwaa052. [DOI:10.1093/glycob/cwaa052]
23. Bull J. Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it? Virus evolution. 2015;1(1):vev005. [DOI:10.1093/ve/vev005]
24. Si L, Xu H, Zhou X, Zhang Z, Tian Z, Wang Y, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science. 2016;354(6316):1170-3. [DOI:10.1126/science.aah5869]
25. Thao TTN, Labroussaa F, Ebert N, V'kovski P, Stalder H, Portmann J, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. BioRxiv. 2020; 13;27(5):841-848.
26. Xie X, Muruato A, Lokugamage KG, Narayanan K, Zhang X, Zou J, et al. An infectious cDNA clone of SARS-CoV-2. Cell host & microbe. 2020; 13;27(5):841-848. [DOI:10.1016/j.chom.2020.04.004]
27. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D, editors. Vaccination in the elderly: the challenge of immune changes with aging. Seminars in Immunology; 2018: 40:83-94. [DOI:10.1016/j.smim.2018.10.010]
28. Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PloS one. 2012;7(7):e40385. [DOI:10.1371/journal.pone.0040385]
29. Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Human vaccines & immunotherapeutics. 2014;10(10):2875-84. [DOI:10.4161/hv.29594]
30. Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet. 2017; 23;390(10101):1511-1520. [DOI:10.1016/S0140-6736(17)31665-3]
31. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nature reviews Drug discovery. 2018;17(4):261. [DOI:10.1038/nrd.2017.243]
32. Smith DM, Simon JK, Baker Jr JR. Applications of nanotechnology for immunology. Nature Reviews Immunology. 2013; 13(8):592-605. [DOI:10.1038/nri3488]
33. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine. 2020.
34. Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W, et al. Leveraging mRNAs sequences to express SARS-CoV-2 antigens in vivo. bioRxiv. 2020; 5;2020.04.01.019877. [DOI:10.1101/2020.04.01.019877]
35. Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, et al. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics. 2020;12(1):30. [DOI:10.3390/pharmaceutics12010030]
36. Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Artificial molecular clamp: a novel device for synthetic polymerases. Angewandte Chemie International Edition. 2011;50(33):7524-8. [DOI:10.1002/anie.201102834]
37. Sharma J, Shepardson K, Johns LL, Wellham J, Avera J, Schwarz B, et al. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS Applied Materials & Interfaces. 2020;12(16):18211-24. [DOI:10.1021/acsami.9b21776]
38. Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS infectious diseases. 2016;2(5):361-76. [DOI:10.1021/acsinfecdis.6b00006]
39. Quinlan BD, Mou H, Zhang L, Guo Y, He W, Ojha A, et al. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. IMMUNITY-D-20-00389. 2020. [DOI:10.1101/2020.04.10.036418]
40. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nature Reviews Immunology. 2020:1-3. [DOI:10.1038/s41577-020-0321-6]
41. Peeples L. News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proceedings of the National Academy of Sciences. 2020;117(15):8218-21. [DOI:10.1073/pnas.2005456117]
42. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254. [DOI:10.3390/v12030254]
43. Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, et al. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology. 2018;7(12):e1511506. [DOI:10.1080/2162402X.2018.1511506]
44. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: the current state of play. Paediatric Respiratory Reviews. 2020; 8:S1526-0542(20)30095-6.
45. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395:470-3. [DOI:10.1016/S0140-6736(20)30185-9]
46. Gorbalenya A, Baker S, Baric R, de Groot R, Drosten C, Gulyaeva A, et al. The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5: 536-44. [DOI:10.1038/s41564-020-0695-z]
47. Kim J-M, Chung Y-S, Jo HJ, Lee N-J, Kim MS, Woo SH, et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res Perspec. 2020;11:3-7. [DOI:10.24171/j.phrp.2020.11.1.02]
48. Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020: 646-655. [DOI:10.1038/s41565-020-0737-y]
49. Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ 2020;369:m1375. [DOI:10.1136/bmj.m1375]
50. Sutton D, Fuchs K, D'alton M, Goffman D. Universal screening for SARS-CoV-2 in women admitted for delivery. N Eng J Med 2020;382: 2163-2164. [DOI:10.1056/NEJMc2009316]
51. Chen W-H, Chag SM, Poongavanam MV, Biter AB, Ewere EA, Rezende W, et al. Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. J Pharm Sci 2017;106:1961-1970. [DOI:10.1016/j.xphs.2017.04.037]
52. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-63. [DOI:10.1126/science.abb2507]
53. Yuan M, Wu NC, Zhu X, Lee C-CD, So RT, Lv H, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020;368:630-33. [DOI:10.1126/science.abb7269]
54. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444-1448. [DOI:10.1126/science.abb2762]
55. Lucchese G. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol 2020;17:539-540. [DOI:10.1038/s41423-020-0377-z]
56. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host microbe 2020; 671-680. [DOI:10.1016/j.chom.2020.03.002]
57. Baruah V, Bose S. Immunoinformatics - aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 2020;92:495-500. [DOI:10.1002/jmv.25698]
58. Enjuanes L, Zuñiga S, Castano-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Molecular basis of coronavirus virulence and vaccine development. Adv Virus Res 2016; 245-286. [DOI:10.1016/bs.aivir.2016.08.003]
59. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 59. [DOI:10.3390/v11010059]
60. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019; 69. [DOI:10.1186/s12985-019-1182-0]
61. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020:765-767. [DOI:10.1038/s41423-020-0374-2]
62. Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol 2020;11:298. [DOI:10.3389/fmicb.2020.00298]
63. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020. [DOI:10.1101/2020.03.30.20047365]
64. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020; 330-333. [DOI:10.1126/science.abb9983]
65. Banerjee A, Santra D, Maiti S. Energetics based epitope screening in SARS CoV-2 (COVID 19) spike glycoprotein by Immuno-informatic analysis aiming to a suitable vaccine development. J Transl Med 2020;10;281. [DOI:10.1101/2020.04.02.021725]
66. Zhou D, Qi R, Zhang W, Tian X, Peng C. Identification of 22 N-glycosites on Spike Glycoprotein of SARS-CoV-2 and Accessible Surface Glycopeptide Motifs: Implications on Vaccination and Antibody Therapeutics. Glycobiology 2021;31:69-80. [DOI:10.1093/glycob/cwaa052]
67. Bull J. Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it? Virus Evol 2015;1:005. [DOI:10.1093/ve/vev005]
68. Si L, Xu H, Zhou X, Zhang Z, Tian Z, Wang Y, et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 2016;354:1170-73. [DOI:10.1126/science.aah5869]
69. Thao TTN, Labroussaa F, Ebert N, V'kovski P, Stalder H, Portmann J, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020;582:561-65. [DOI:10.1038/s41586-020-2294-9]
70. Xie X, Muruato A, Lokugamage KG, Narayanan K, Zhang X, Zou J, et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microb 2020;27:841-848. [DOI:10.1016/j.chom.2020.04.004]
71. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D, editors. Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol 2018;40:83-94. [DOI:10.1016/j.smim.2018.10.010]
72. Reuters Staff. Iran starts human testing of first domestic COVID-19 vaccine. https://www.reuters.com/article/health-coronavirus-iran-vaccine/iran-starts-human-testing-of-first-domestic-covid-19-vaccine-idUSL1N2J90BZ. [Updated DECEMBER 29, 2020]
73. Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PloS One 2012;7: 40385. [DOI:10.1371/journal.pone.0040385]
74. Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccines Immunother 2014;10: 2875-2884. [DOI:10.4161/hv.29594]
75. Knoll M.D, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 2020;6736:32623-4. [DOI:10.1016/S0140-6736(20)32623-4]
76. Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017;390:1511-20. [DOI:10.1016/S0140-6736(17)31665-3]
77. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-79. [DOI:10.1038/nrd.2017.243]
78. Smith DM, Simon JK, Baker Jr JR. Applications of nanotechnology for immunology. Natur Revs Immunol 2013; 13:592-605. [DOI:10.1038/nri3488]
79. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med 2020;383:1544-55. [DOI:10.1056/NEJMoa2024671]
80. Mahase E. Covid-19: Pfizer vaccine efficacy was 52% after first dose and 95% after second dose, paper shows. BMJ 2020; 371: 4826. [DOI:10.1136/bmj.m4826]
81. Mahase E. Covid-19: Covid-19: Moderna applies for US and EU approval as vaccine trial reports 94.1% efficacy. BMJ 2020; 371: 4709. [DOI:10.1136/bmj.m4709]
82. Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W, et al. Leveraging mRNA Sequences and Nanoparticles to Deliver SARS-CoV-2 Antigens In Vivo. Adv Mater 2020;32:2004452. [DOI:10.1002/adma.202004452]
83. Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, et al. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics 2020;12:30. [DOI:10.3390/pharmaceutics12010030]
84. Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Artificial molecular clamp: a novel device for synthetic polymerases. Angew Chem Int Ed Engl 2011;50:7524-8. [DOI:10.1002/anie.201102834]
85. Sharma J, Shepardson K, Johns LL, Wellham J, Avera J, Schwarz B, et al. A Self-Adjuvanted, Modular, Antigenic VLP for Rapid Response to Influenza Virus Variability. ACS Appl Mater Interfaces 2020;12:18211-18224. [DOI:10.1021/acsami.9b21776]
86. Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis 2016;2:361-376. [DOI:10.1021/acsinfecdis.6b00006]
87. Quinlan BD, Mou H, Zhang L, Guo Y, He W, Ojha A, et al. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. BioRxiv 2020. [DOI:10.1101/2020.04.10.036418]
88. Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol 2020 2;202:339-341. [DOI:10.1038/s41577-020-0321-6]
89. Peeples L. News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine. Proc Natl Acad Sci U S A. 2020;1172:8218-8221. [DOI:10.1073/pnas.2005456117]
90. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020;122:254. [DOI:10.3390/v12030254]
91. Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, et al. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunol 2018;7: 1511506. [DOI:10.1080/2162402X.2018.1511506]
92. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: the current state of play. Paediatr Respir Rev 2020;35: 43-49. [DOI:10.1016/j.prrv.2020.06.010]
93. Zimmer C, Corum J, Wee DL. Coronavirus Vaccine Tracker. Available from: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html. [Updated March 1, 2021]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Siadat S D, rahimi A, Fateh A. Strategies of vaccine production against COVID-19: when will an effective vaccine be produced?. MEDICAL SCIENCES 2021; 31 (1) :29-38
URL: http://tmuj.iautmu.ac.ir/article-1-1794-fa.html

سیادت سید داور، رحیمی ایوب، فاتح ابوالفضل. استراتژی های تولید واکسن علیه COVID-19: چه زمانی یک واکسن موثر آماده خواهد شد؟. فصلنامه علوم پزشکی دانشگاه آزاد اسلامی تهران. 1400; 31 (1) :29-38

URL: http://tmuj.iautmu.ac.ir/article-1-1794-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 31، شماره 1 - ( بهار1400 1400 ) برگشت به فهرست نسخه ها
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4660