[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای داوران::
ثبت نام ::
اشتراک::
اطلاعات نمایه::
برای نویسندگان::
لینکهای مفید::
فرآیند چاپ::
پست الکترونیک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 32، شماره 4 - ( زمستان 1401 ) ::
جلد 32 شماره 4 صفحات 355-347 برگشت به فهرست نسخه ها
اثر ترکیبات فیتوشیمیایی بر شاخصه های فشار اکسایشی، التهاب و آسیب عضله اسکلتی ناشی از فعالیت بدنی
محسن صاحبی1 ، محمدعلی آذربایجانی 2، مقصود پیری3
1- دانشجوی دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی واحد تهران مرکزی
2- گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی واحد تهران مرکزی ، m_azarbayjani@iauctb.ac.ir
3- گروه فیزیولوژی ورزشی، دانشگاه آزاد اسلامی واحد تهران مرکزی
چکیده:   (1661 مشاهده)
فعالیت های بدنی با افزایش تولید گونه های فعال اکسیژن همراه است. تولید گونه های فعال اکسیژن تابعی از شدت ، مدت  و نوع فعالیت می باشد. هرچند مقادیر فیزیولوژیک گونه های فعال اکسیژن برای تنظیم واکنش های سلولی ضروری می باشد، اما تولید بیش از حد آنها می تواند آسیب های متعددی را بر ساختار و عملکرد سلول ها وارد نموده و هم عملکرد جسمانی را تضعیف نموده و هم سلامتی را به مخاطره اندازد. با وجود آنکه فعالیت بدنی خود محرکی برای افزایش ظرفیت دفاع آنتی اکسیدانی می باشد، ولی در صورت اجرای تمرینات شدید و طولانی ، تولید گونه های فعال اکسیژن فراتر از ظرفیت دفاع انتی اکسیدانی می گردد. در این شرایط استفاده از مواد آنتی اکسیدان برون زاد می توان راهکار مناسبی برای توسعه عملکرد و سلامت  جسمانی باشد. گیاهان از منابع سرشار و غنی مواد آنتی اکسیدان هستند که می توانند بخش عمده گونه های فعال اکسیژن ناشی از تمرینات جسمانی را خنثی نموده و به دنبال آن التهاب و آسیب های عضلانی همراه با انقباض های عضلانی مکرر به ویژه انقباض های برون گرا را کاهش دهند. با وجود آنکه  به دلیل تفاوت های روش شناسی در مطالعات برخی تناقضات در نتایج مطالعات  وجود دارد، با این وجود نتایج مطالعات در کل اثر گذاری مواد فیتوشیمیایی بر کاهش فشار اکسایشی، التهاب، درد، آسیب عضلانی و بهبود عملکرد جسمانی  را تایید می نماییندو بر این اساس توصیه می شود افرادی که به انجام تمرینات جسمانی شدید و طولانی مبادرت می ورزند، جهت حفظ و بهبود عملکردجسمانی و توسعه سلامتی از مواد فیتوشیمیایی موجود در گیاهان  استفاده نمایند.
 
واژه‌های کلیدی: فعالیت بدنی شدید، فشار اکسایشی، التهاب، مواد فیتوشیمیایی
متن کامل [PDF 339 kb]   (501 دریافت)    
نيمه آزمايشي : مروري | موضوع مقاله: فيزيولوژي
دریافت: 1401/3/17 | پذیرش: 1401/7/12 | انتشار: 1401/10/10
فهرست منابع
1. Halliwell B, Gutteridge JMC, Eds. Free Radicals in Biology and Medicine. New York: Oxford University Press; 2015. 2. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981-90. https://doi.org/10.1016/j.cellsig.2012.01.008 3. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol (Oxf). 2015; 214: 329-48 https://doi.org/10.1111/apha.12515 4. Gandhi S, Abramov AY. Mechanism of Oxidative Stress in Neurodegeneration. Oxid Med Cell Longev 2012; 2012: 428010. https://doi.org/10.1155/2012/428010 5. Majzunova M, Dovinova I, Barancik M, Chan JYH. Redox signaling in pathophysiology of hypertension. J Biomed Sci 2013; 20: 69. https://doi.org/10.1186/1423-0127-20-69 6. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44: 479-96. https://doi.org/10.3109/10715761003667554 7. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol 2019; 70. 8. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid Med Cell Longev 2016; 2016: 3565127. https://doi.org/10.1155/2016/3565127 9. Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015; 5: 356-77. https://doi.org/10.3390/biom5020356 10. Radák Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, et al. Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur J Appl Physiol Occup Physiol 1996; 72: 189-94. https://doi.org/10.1007/BF00838637 11. Reid MB. Reactive Oxygen Species as Agents of Fatigue. Med Sci Sports Exerc 2016; 48: 2239-46. https://doi.org/10.1249/MSS.0000000000001006 12. Powers SK, Smuder AJ, Judge AR. Oxidative stress and disuse muscle atrophy: cause or consequence? Curr Opin Clin Nutr Metab Care 2012; 15: 240-5. https://doi.org/10.1097/MCO.0b013e328352b4c2 13. Park Y, Aminizadeh S, Lee J, Zarezadehmehrizi A, Najafipour H, Amiri-Deh Ahmadi M, et al. MitoQ supplementation improves oxygen uptake kinetic by reduced reactive oxygen species levels and altered expression of miR-155 and miR-181b. The FASEB Journal 2022; 36. https://doi.org/10.1096/fasebj.2022.36.S1.R6226 14. Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 2008; 44: 142-52. https://doi.org/10.1016/j.freeradbiomed.2007.02.031 15. Wang L, Chen J, Xie H, Ju X, Liu RH. Phytochemical profiles and antioxidant activity of adlay varieties. J Agric Food Chem 2013; 61: 5103-13. https://doi.org/10.1021/jf400556s 16. Shirvani H, Ghanbari-Niaki A, Rahmati-Ahmadabad S, Sobhani V. Effects of endurance training and herb supplementation on tissue nesfatin-1/nucleobindin-2 and ghrelin mRNA expression. Int J Appl Exerc Physiol 2017; 6: 71-84. https://doi.org/10.22631/ijaep.v6i1.118 17. Rahmati-Ahmadabad S, Azarbayjani MA, Broom DR, Nasehi M. Effects of high-intensity interval training and flaxseed oil supplement on learning, memory and immobility: relationship with BDNF and TrkB genes. Comparative Exercise Physiology 2021; 17: 273-83. https://doi.org/10.3920/CEP200046 18. Barbosa AP, Silveira Gde O, de Menezes IA, Rezende Neto JM, Bitencurt JL, Estavam Cdos S, et al. Antidiabetic effect of the Chrysobalanus icaco L. aqueous extract in rats. J Med Food 2013; 16: 538-43. https://doi.org/10.1089/jmf.2012.0084 19. Teles YCF, Souza MSR, Souza MFV. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules 2018; 23. https://doi.org/10.3390/molecules23020480 20. Peluso I, Miglio C, Morabito G, Ioannone F, Serafini M. Flavonoids and immune function in human: a systematic review. Crit Rev Food Sci Nutr 2015; 55: 383-95. https://doi.org/10.1080/10408398.2012.656770 21. Mohammadi B, Anoosheh L, Rahmati-Ahmadabad S. Effect of 1-week Calendula officinalis consumption before high-intensity interval exercise on some delayed onset muscle soreness (DOMS) elements in male rowers. Comparative Exercise Physiology 2021; 17: 493-500. https://doi.org/10.3920/CEP200087 22. Rezaee M, Hajiaghaee R, Azizbeigi K, Rahmati-Ahmadabad S, Helalizadeh M, Akbari M, Farzanegi P, Azarbayjani MA. The effect of essential oil of rosemary on eccentric exercise-induced delayed-onset muscle soreness in non-active women. Comparative Exercise Physiology 2020; 16: 129-36. https://doi.org/10.3920/CEP190034 23. Naghavi-Azad E, Rahmati-Ahmadabad S, Amini H, Azizbeigi K, Helalizadeh M, Iraji R, et al. Effects of simultaneous intake of chamomile and ibuprofen on delayed-onset muscle soreness markers and some liver enzymes following eccentric exercise. German Journal of Exercise and Sport Research 2020; 50: 395-405. https://doi.org/10.1007/s12662-020-00662-x 24. Vakili S, Ghasemi F, Rahmati-Ahmadabad S, Amini H, Iraji R, Seifbarghi T, et al. Effects of vibration therapy and vitamin D supplement on eccentric exercise-induced delayed onset muscle soreness in female students. Comparative Exercise Physiology 2020; 16: 267-75. https://doi.org/10.3920/CEP190062 25. Abdollahi S, Rahmati-Ahmadabad S, Abdollahi K, Gholami N, Ziyarati A, Nikbin S, et al. Phoenix dactylifera pollen does not affect eccentric resistance exercise-induced delayed-onset muscle soreness (DOMS) in female athletes. Sport Sciences for Health 2021; 17: 615-24. https://doi.org/10.1007/s11332-020-00723-6 26. Hotfiel T, Freiwald J, Hoppe MW, Lutter C, Forst R, Grim C, et al. Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sportverletz Sportschaden 2018; 32: 243-50. https://doi.org/10.1055/a-0753-1884 27. Dupuy O, Douzi W, Theurot D, Bosquet L, Dugué B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review with Meta-Analysis. Front Physiol 2018; 9: 403. https://doi.org/10.3389/fphys.2018.00403 28. Hody S, Croisier JL, Bury T, Rogister B, Leprince P. Eccentric Muscle Contractions: Risks and Benefits. Front Physiol 2019; 10: 536. https://doi.org/10.3389/fphys.2019.00536 29. Konrad A, Kasahara K, Yoshida R, Yahata K, Sato S, Murakami Y, et al. Relationship between Eccentric-Exercise-Induced Loss in Muscle Function to Muscle Soreness and Tissue Hardness. Healthcare (Basel, Switzerland) 2022; 10. https://doi.org/10.3390/healthcare10010096 30. Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, et al. Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med 2004; 37: 480-7. https://doi.org/10.1016/j.freeradbiomed.2004.05.008 31. Farias-Junior LF, Browne RAV, Freire YA, Oliveira-Dantas FF, Lemos T, Galvão-Coelho NL, et al. Psychological responses, muscle damage, inflammation, and delayed onset muscle soreness to high-intensity interval and moderate-intensity continuous exercise in overweight men. Physiol Behav 2019; 199: 200-209. https://doi.org/10.1016/j.physbeh.2018.11.028 32. Cornish SM, Johnson ST. Systemic cytokine response to three bouts of eccentric exercise. Results Immunol 2014; 4: 23-29. https://doi.org/10.1016/j.rinim.2014.04.002 33. Torre MF, Martinez-Ferran M, Vallecillo N, Jiménez SL, Romero-Morales C, Pareja-Galeano H. Supplementation with Vitamins C and E and Exercise-Induced Delayed-Onset Muscle Soreness: A Systematic Review. Antioxidants (Basel) 2021; 10: 279. https://doi.org/10.3390/antiox10020279 34. Black CD, Herring MP, Hurley DJ, O'Connor PJ. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J Pain 2010; 11: 894-903. https://doi.org/10.1016/j.jpain.2009.12.013 35. Dominguez-Balmaseda D, Diez-Vega I, Larrosa M, San Juan AF, Issaly N, Moreno-Pérez D, Burgos S, Sillero-Quintana M, Gonzalez C, Bas A, Roller M, Pérez-Ruiz M. Effect of a Blend of Zingiber officinale Roscoe and Bixa orellana L. Herbal Supplement on the Recovery of Delayed-Onset Muscle Soreness Induced by Unaccustomed Eccentric Resistance Training: A Randomized, Triple-Blind, Placebo-Controlled Trial. Front Physiol. 2020; 11 826. doi: 10.3389/fphys.2020.00826. PMC7396658. https://doi.org/10.3389/fphys.2020.00826 36. Hoseinzadeh K, Daryanoosh F, Baghdasar PJ, Alizadeh H. Acute effects of ginger extract on biochemical and functional symptoms of delayed onset muscle soreness. Med J Islam Repub Iran 2015; 29 261. 37. Rondanelli M, Fossari F, Vecchio V, Gasparri C, Peroni G, Spadaccini D, et al. Clinical trials on pain lowering effect of ginger: A narrative review. Phytother Res 2020; 34: 2843-56. https://doi.org/10.1002/ptr.6730 38. Khatami Sabzevar M, Haghighi A, Askari R. The Effect of Short-term Use of Chamomile Essence on Muscle Soreness in Young Girls after an Exhaustive Exercise. Journal of Medicinal Plants 2017; 16: 63-73. 39. Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T. Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int Immunopharmacol 2011; 11: 1150-9. https://doi.org/10.1016/j.intimp.2011.03.012 40. Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86: 441-9. https://doi.org/10.1016/j.biopha.2016.12.049 41. Kerksick CM, Kreider RB, Willoughby DS. Intramuscular adaptations to eccentric exercise and antioxidant supplementation. Amino Acids 2010; 39: 219-32. https://doi.org/10.1007/s00726-009-0432-7 42. Panza VS, Wazlawik E, Ricardo Schütz G, Comin L, Hecht KC, da Silva EL. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008; 24: 433-42. https://doi.org/10.1016/j.nut.2008.01.009 43. Jówko E, Sacharuk J, Balasińska B, Ostaszewski P, Charmas M, Charmas R. Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr Res 2011; 31: 813-21. https://doi.org/10.1016/j.nutres.2011.09.020 44. Herrlinger KA, Chirouzes DM, Ceddia MA. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food Nutr Res 2015; 59: 30034. https://doi.org/10.3402/fnr.v59.30034 45. Moradi Kelardeh B, Rahmati-Ahmadabad S, Farzanegi P, Helalizadeh M, Azarbayjani M-A. Effects of non-linear resistance training and curcumin supplementation on the liver biochemical markers levels and structure in older women with non-alcoholic fatty liver disease. J Bodyw Mov Ther 2020; 24: 154-60. https://doi.org/10.1016/j.jbmt.2020.02.021 46. McFarlin BK, Venable AS, Henning AL, Sampson JN, Pennel K, Vingren JL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin 2016; 5: 72-8. https://doi.org/10.1016/j.bbacli.2016.02.003 47. Drobnic F, Riera J, Appendino G, Togni S, Franceschi F, Valle X, et al. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): a randomised, placebo-controlled trial. J Int Soc Sports Nutr 2014; 11: 31. https://doi.org/10.1186/1550-2783-11-31 48. Nicol LM, Rowlands DS, Fazakerly R, Kellett J. Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Eur J Appl Physiol 2015; 115: 1769-77. https://doi.org/10.1007/s00421-015-3152-6 49. Morihara N, Nishihama T, Ushijima M, Ide N, Takeda H, Hayama M. Garlic as an anti-fatigue agent. Mol Nutr Food Res 2007; 51: 1329-34. https://doi.org/10.1002/mnfr.200700062 50. Farzanegi P, Abbaszadeh H, Farokhi F, Rahmati-Ahmadabad S, Hosseini SA, Ahmad A, et al. Attenuated Renal and Hepatic Cells Apoptosis Following Swimming Exercise Supplemented with Garlic Extract in Old Rats. Clin Interv Aging 2020; 15: 1409-18. https://doi.org/10.2147/CIA.S250321 51. Su QS, Tian Y, Zhang JG, Zhang H. Effects of allicin supplementation on plasma markers of exercise-induced muscle damage, IL-6 and antioxidant capacity. Eur J Appl Physiol 2008; 103: 275-83. https://doi.org/10.1007/s00421-008-0699-5 52. Esmaeelzadeh R, Azizbeigi K, Atashak S, Dehghan F, Feizolahi F, Azarbayjani MA, et al. Short-term influence of garlic supplementation therapy on oxidative stress markers following military physical activity: A preliminary study. Journal of Military and Veterans' Health 2021;29: 6-14. 53. McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr 2012; 9: 19. https://doi.org/10.1186/1550-2783-9-19 54. Buchwald-Werner S, Naka I, Wilhelm M, Schütz E, Schoen C, Reule C. Effects of lemon verbena extract (Recoverben®) supplementation on muscle strength and recovery after exhaustive exercise: a randomized, placebo-controlled trial. J Int Soc Sports Nutr 2018; 15: 5. https://doi.org/10.1186/s12970-018-0208-0 55. Panza VP, Diefenthaeler F, Tamborindeguy AC, Camargo Cde Q, de Moura BM, Brunetta HS, et al. Effects of mate tea consumption on muscle strength and oxidative stress markers after eccentric exercise. Br J Nutr 2016; 115: 1370-8. https://doi.org/10.1017/S000711451600043X 56. Meamarbashi A, Rajabi A. Preventive effects of 10-day supplementation with saffron and indomethacin on the delayed-onset muscle soreness. Clin J Sport Med 2015; 25: 105-12. https://doi.org/10.1097/JSM.0000000000000113 57. Tsitsimpikou C, Kioukia-Fougia N, Tsarouhas K, Stamatopoulos P, Rentoukas E, Koudounakos A, et al. Administration of tomato juice ameliorates lactate dehydrogenase and creatinine kinase responses to anaerobic training. Food Chem Toxicol 2013; 61 9-13. https://doi.org/10.1016/j.fct.2012.12.023 [DOI:10.1093/acprof:oso/9780198717478.001.0001]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sahibi M, Azarbayjani M A, Peeri M. The effect of phytochemical compounds on indicators of oxidative stress, inflammation and skeletal muscle damage caused by physical activity. MEDICAL SCIENCES 2022; 32 (4) :347-355
URL: http://tmuj.iautmu.ac.ir/article-1-2011-fa.html

صاحبی محسن، آذربایجانی محمدعلی، پیری مقصود. اثر ترکیبات فیتوشیمیایی بر شاخصه های فشار اکسایشی، التهاب و آسیب عضله اسکلتی ناشی از فعالیت بدنی. فصلنامه علوم پزشکی دانشگاه آزاد اسلامی تهران. 1401; 32 (4) :347-355

URL: http://tmuj.iautmu.ac.ir/article-1-2011-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 32، شماره 4 - ( زمستان 1401 ) برگشت به فهرست نسخه ها
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660