[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 1 (spring 2024) ::
MEDICAL SCIENCES 2024, 34(1): 37-45 Back to browse issues page
The effect of silver nanoparticles synthesized with ginger on reducing vanA gene expression in vancomycin-resistant Enterococcus faecalis strains
Ehsan Al-Sabrawi1 , Farahnaz Molavi 2
1- MSc Student in Cellular and Molecular Sciences, Islamic Azad University, Mashhad Branch, Department of Biology, Mashhad, Iran
2- Islamic Azad University, Mashhad Branch, Department of Biology, Mashhad, Iran , FARAHMOLAVI@GMAIL.COM
Abstract:   (864 Views)
Background: One of the factors causing the resistance of Enterocus faecalis bacteria to the vancomycin antibiotic is the vanA gene, and the purpose of this research is to investigate the effect of silver nanoparticles on the expression of the vanC resistance gene.
Materials and methods: In this study, 98 isolates were examined after confirming the presence of the vanA gene and the antibiogram test of the treatment, the bacteria with multidrug resistance with the lowest ability to silver nanoparticles were performed and with the Real-time PCR technique, the data were analyzed. It was related to the change of gene expression. vanA was transformed in two analysis groups.
Results: Antibiotic resistance of the strains was 50% to vancomycin, 32% to ciprofloxacin, 15% to chloramphenicol, 5% to teicoplanin, 43% to erythromycin, 79% to amikacin, 80% to tetracycline, 80% to cephalexin, 85% to penicillin, and 1% to linozolid. Real-time analysis on the resistant strains in which the presence of vanA gene was confirmed by PCR and treated with silver nanoparticles showed that the effect of nanoparticles on the expression of vanA gene is significant.
Conclusion: Existing 87% of the multidrug resistance in 64 confirmed strains indicates that the issue of multidrug resistance is a serious warning in the use of antibiotics to treat infections caused by Enterococcus faecalis and the effectiveness of silver nanoparticles on vanA gene expression indicates that It can be used as an alternative to antibiotics in infections caused by Enterococcus faecalis.
 
Keywords: Streptococcus, Vancomycin, Metal nanoparticles, Multidrug-resistant, Ginger
Full-Text [PDF 642 kb]   (275 Downloads)    
Semi-pilot: Survey/Cross Sectional/Descriptive | Subject: Molecular Biology
Received: 2023/05/30 | Accepted: 2023/08/29 | Published: 2024/02/29
References
1. Zhou X, Willems RJL, Friedrich AW, Rossen JWA, Bathoorn E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control 2020; 9:130. [DOI:10.1186/s13756-020-00770-1]
2. Chilambi GS, Hinks J, Matysik A, Zhu X, Choo PY, Liu X, et al. Enterococcus faecalis Adapts to Antimicrobial Conjugated Oligoelectrolytes by Lipid Rearrangement and Differential Expression of Membrane Stress Response Genes. Front Microbiol 2020; 11:155. [DOI:10.3389/fmicb.2020.00155]
3. Vestergaard M, Skive B, Domraceva I, Ingmer H, Franzyk H. Peptide/β-Peptoid Hybrids with Activity against Vancomycin-Resistant Enterococci: Influence of Hydrophobicity and Structural Features on Antibacterial and Hemolytic Properties. Int J Mol Sci 2021; 22:5617. [DOI:10.3390/ijms22115617]
4. Markwart R, Willrich N, Eckmanns T, Werner G, Ayobami O. Low Proportion of Linezolid and Daptomycin Resistance Among Bloodborne Vancomycin-Resistant Enterococcus faecium and Methicillin-resistant Staphylococcus aureus Infections in Europe. Front Microbiol 2021; 12:664199. [DOI:10.3389/fmicb.2021.664199]
5. Azad A, Rostamifar S, Modaresi F, Bazrafkan A, Rezaie Z. Assessment of the Antibacterial Effects of Bismuth Nanoparticles against Enterococcus faecalis. Biomed Res Int 2020; 2020:5465439. [DOI:10.1155/2020/5465439]
6. Saeidi S, Mirnejad R, Masoumi Zavariani S, Rostasmzadeh S. Molecular Identification of Pathogenic Enterococci and Evaluation of Multi-drug Resistance in Enterococcus Species Isolated From Clinical samples of Some Hospitals in Tehran, Iran. Modern Med Lab J 2018; 1:60-7. [DOI:10.30699/mmlj17.1.2.60]
7. Rashid A, Molavi F, Mahmoudzadeh H. The effect of silver nanoparticles on mecA gene expression in methicillin-resistant samples of Staphylococcus aureus. New Cell Mol Biotech 2020; 11:67-82 [In Persian]
8. Willems RJ, Bonten MJ. Glycopeptide-resistant enterococci: deciphering virulence, resistance and epidemicity. Curr Opin Infect Dis 2007; 20:384-90. [DOI:10.1097/QCO.0b013e32818be63d]
9. Von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelph iachromosome- positive leukaemia to STI571: a prospective study. Lancet 2002; 359:487-91. [DOI:10.1016/S0140-6736(02)07679-1]
10. Ramirez CB, Cantey JB. Antibiotic resistance in the neonatal intensive care unit. Neo Reviews 2019;20: e135-ee44. [DOI:10.1542/neo.20-3-e135]
11. van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM, Hammerum AM, et al. The global dissemination of hospital clones of Enterococcus faecium. Genome Med 2021;13:52. [DOI:10.1186/s13073-021-00868-0]
12. National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 2004; 32: 470-85. [DOI:10.1016/j.ajic.2004.10.001]
13. Harada S, Shibue Y, Aoki K, Ishii Y, Tateda K. Prevalence of High-Level Aminoglycoside Resistance and Genes Encoding Aminoglycoside-Modifying Enzymes in Enterococcus faecalis and Enterococcus faecium Isolated in a University Hospital in Tokyo. Jpn J Infect Dis 2020:24;73:476-480. [DOI:10.7883/yoken.JJID.2019.416]
14. Khodabandeh M, Mohammadi M, Abdolsalehi MR, Hasannejad-Bibalan M, Gholami M, Alvandimanesh A, Pournajaf A, Rajabnia R. High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium; as a serious threat in hospitals. Infectious Disorders-Drug Targets J 2020; 20:223-8. [DOI:10.2174/1871526519666181130095954]
15. Schouten MA, Hoogkamp-Korstanje JAA, Meis JFG, Voss, European VRE study group. Prevalence of vancomycin-resistant Enterococciin Europe. Eur J Clin Microbiol Infect Dis 2000;19:816-22. [DOI:10.1007/s100960000390]
16. Jannati E, Amirmozaffari N, Saadatmand S, Arzanlou M. Faecal carriage of high-level aminoglycoside-resistant and ampicillin-resistant Enterococcus species in healthy Iranian children. J Glob Antimicrob Resist 2020;20:135-144. [DOI:10.1016/j.jgar.2019.06.022]
17. Saifi M, Rahimi F, Nakhost Lotfi M, Pourshafie MR, Soltan Dallal MM. Prevalence and antibiotic resistance of Enterococci species isolated from two sewage treatment plants in Tehran. Iran Bio J 2018; 21: 250-260. [In Persian]
18. Shiadeh SMJ, Azimi L, Azimi T, Pourmohammad A, Goudarzi M, Chaboki BG, et al. Upregulation of efrAB efflux pump among Enterococcus faecalis ST480, ST847 in Iran. Acta Microbiol Immunol Hung 2020:25;67:187-192. [DOI:10.1556/030.2020.01173]
19. Shafiyabi S, Mariraj J, Sumathi S, Krishna S. Emergence of vancomycin resistant Enterococci in a tertiary care hospital in South India. Int J Pharm Biomed Res 2013; 4: 111-113.
20. Sun L, Xu J, Wang W, He F. Emergence of vanA-Type Vancomycin-Resistant Enterococcus faecium ST 78 Strain with a rep2-Type Plasmid Carrying a Tn1546-Like Element Isolated from a Urinary Tract Infection in China. Infect Drug Resist 2020; 13:949-955. [DOI:10.2147/IDR.S247569]
21. Sadeghian M , Habibipour R, Asghar Seif I. Effect of Silver Nano-Particle on Removing the Enterococcus faecalis Bacterium isolated from Industrial Resid. mljgoums 2015;9:133 - 138. [In Persian]
22. Salmani M, Survey of Silver Nanoparticles Antibacterial Activity against Gram-Positive and Gram-negative Bacteria in Vitro TB 2017; 16:74-84. [In Persian]
23. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al. Effect of Propolis Nanoparticles against Enterococcus faecalis Biofilm in the Root Canal. Molecules J 2021; 26:715. [DOI:10.3390/molecules26030715]
24. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Bio and Med 2007;3:95-101. [DOI:10.1016/j.nano.2006.12.001]
25. Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, et al. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 2010; 54:4208-18. [DOI:10.1128/AAC.01830-09]
26. Shahmoradi S, Shariati A, Zargar N, Yadegari Z, Asnaashari M, Amini SM, et al. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagnosis Photodyn Ther 2021:13; 35:102398. [DOI:10.1016/j.pdpdt.2021.102398]
27. Seyedeh S, Hendi N, Amiri B, Poormoradi M, Yousef A, Saeid-Afshar M. Antibacterial Effects of Erbium Chromium Laser along with/without Silver Nanoparticles in Root Canals Infected by Enterococcus faecalis. Int J Dent 2021;3:6659146. [DOI:10.1155/2021/6659146]
28. Rashid A, Molavi F, Mahmoudzadeh H. The effect of silver nanoparticles on mecA gene expression in methicillin-resistant samples of Staphylococcus aureus. New Cell Mol Biotech 2020; 11:67-82
29. Namasivayam S.K.R., Ganesh S, Avimanyu, B. Evaluation of anti-bacterial activity of silver nanoparticles synthesized from Candida glabrata and Fusarium oxysporum. Int J Med Res 2011;1:131-136.
30. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMed Chem 2007;2:129-36. [DOI:10.1002/cmdc.200600171]
31. Abd El-Aziz NK, Ammar AM, El-Naenaeey EYM, El Damaty HM, Elazazy AA, Hefny AA, et al. Antimicrobial and antibiofilm potentials of cinnamon oil and silver nanoparticles against Streptococcus agalactiae isolated from bovine mastitis: new avenues for countering resistance. BMC Vet Res 2021;17:136. [DOI:10.1186/s12917-021-02842-9]
32. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 2012;8:37-45. [DOI:10.1016/j.nano.2011.05.007]
33. McNeilly O, Mann R, Hamidian M and Gunawan C Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol 2021: 2: 652863. [DOI:10.3389/fmicb.2021.652863]
34. Asadi M, Khosravi-Darani K, Mortazavi A, Hajseyed Javadi N, Azadnia E, Kiani Harchegani A, et al. Antimicrobial effect of silver nanoparticles produced by chemical reduction on Staphylococcus aureus and Escheirchia coli. Iran J Nutr Sci Food Technol 2014; 8:83-92.
35. Azadi Fahimeh, Jamali Ayler, Bai Basira, Bazuri Massoud, Shakeri Fatemeh, Ghaemi Ezatollah. Minimum inhibitory concentration of silver nanoparticles against Staphylococcus aureus and its relationship with methicillin resistance and source of bacterial isolation. J Gorgan Univ Med Sci 2016, 18: 86-91. [In Persian]
36. Albadiri V, Molavi F, Tehranipoor M. The effect of silver nanoparticles on blaTEM gene expression in beta-lactamase-resistant samples in Escherichia coli. J Microbiol 2021;39:87-100. [In Persian]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al-Sabrawi E, Molavi F. The effect of silver nanoparticles synthesized with ginger on reducing vanA gene expression in vancomycin-resistant Enterococcus faecalis strains. MEDICAL SCIENCES 2024; 34 (1) :37-45
URL: http://tmuj.iautmu.ac.ir/article-1-2027-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 1 (spring 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660