[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 33, Issue 1 (spring 2023) ::
MEDICAL SCIENCES 2023, 33(1): 1-10 Back to browse issues page
Investigating the effect of B. thetaiotaomicron and its derivatives on the expression of tlr2 and tlr4 genes in STC-1 cell line
Somaye Vaezijoze1, Shiva Irani2 , Seyed Davar Siadat 3, Mohammadreza Zali4
1- Department of Biology, Science, and Research Branch, Islamic Azad University, Tehran, Iran
2- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
3- Department of Mycobacteriology and Pulmonary Research, P7asteur Institute of Iran, Tehran, Iran - Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran , d.siadat@gmail.com
4- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran 7
Abstract:   (174 Views)
Background: B. thetaiotaomicron is introduced as a candidate for the next generation of probiotics. TLR2, 4 play an important and necessary role in activating and modulating the innate immune system after exposure to bacteria in the intestine. This study aimed to investigate the effect of B. thetaiotaomicron and its derivatives on the alteration of the tlr2 and tlr4 gene expression.
Materials and methods: The effects of B. thetaiotaomicron, OMVs, inactive bacteria and supernatant treatments on the tlr2 and tlr4 gene expression in the STC-1 cell line were investigated using the qRT-PCR method.   
Results: The treatment of the STC-1 cell line with live and active B. thetaiotaomicron did not have significant effect on transcription of  tlr2, 4. The OMVs of this bacterium at 50 µg/ml significantly increased the gene expression of tlr2 (p=0.01) and tlr4 (p=0.02), but at a concentration of 100 µg/ml, its effect was not significant. Inactive bacteria at MOI 10 (p=0.03) and MOI 50(p=0.003) significantly induce the transcription of both two genes. Supernatant 25% significantly increased tlr2 (p=0.038) and tlr4 (p=0.034) gene expression at the transcription level.
Conclusion: Our results showed that OMVs at a concentration of 50 μg/ml, inactive bacteria, and supernatant B. thetaiotaomicron play an important role in modulating immune response and can be used as a next generation postbiotics and paraprobiotic candidates for further studies to be used.
Keywords: B.thetaiotaomicron, Microbiota, OMVs, TLR2, TLR4
Full-Text [PDF 427 kb]   (74 Downloads)    
Semi-pilot: Experimental | Subject: Infectious Diseases
Received: 2022/09/7 | Accepted: 2022/10/15 | Published: 2023/03/30
1. Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010;8(4):435-54. [DOI:10.1586/eri.10.14]
2. Tanagho PA, Shohdy KS. GPR 120: The Potential Target for Obesity Treatment. Endocr Metab Immune Disord Drug Targets 2016;16:8-11. [DOI:10.2174/1871530316666151123115611]
3. Walsh CJ, Guinane CM, O'Toole PW, Cotter PD. Beneficial modulation of the gut microbiota. FEBS Lett 2014;588:4120-30. [DOI:10.1016/j.febslet.2014.03.035]
4. Kho ZY, Lal SK. The human gut microbiome-a potential controller of wellness and disease. Front Microbiol 2018:1835. [DOI:10.3389/fmicb.2018.01835]
5. Hooks KB, O'Malley MA. Dysbiosis and its discontents. MBio 2017;8:e01492-17. [DOI:10.1128/mBio.01492-17]
6. Di Lorenzo F, De Castro C, Silipo A, Molinaro A. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol Rev 2019;43:257-72. [DOI:10.1093/femsre/fuz002]
7. Behrouzi A, Mazaheri H, Falsafi S, Tavassol ZH, Moshiri A, Siadat SD. Intestinal effect of the probiotic Escherichia coli strain Nissle 1917 and its OMV. J Diab Metab Disord 2020;19:597-604. [DOI:10.1007/s40200-020-00511-6]
8. Sharifi L, Aghamohammadi A, Mohsenzadegan M, Rezaei N, Towfighi Zavareh F, Moshiri M, et al. Immunomodulation of TLR2 and TLR4 by G2013 (alfa-L-Guluronic acid) in CVID Patients. Int J Pediatr 2017;5:5327-37.
9. Chen C-Y, Kao C-L, Liu C-M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci 2018;19:2729. [DOI:10.3390/ijms19092729]
10. Llewellyn A, Foey A. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients 2017;9:1156. [DOI:10.3390/nu9101156]
11. Molina-Tijeras JA, Gálvez J, Rodríguez-Cabezas ME. The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients 2019;11:1038. [DOI:10.3390/nu11051038]
12. Wegh CA, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 2019;20:4673. [DOI:10.3390/ijms20194673]
13. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EM, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021;18:649-67. [DOI:10.1038/s41575-021-00440-6]
14. Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, et al. Paraprobiotics and postbiotics of probiotic lactobacilli, their positive effects on the host and action mechanisms: a review. Front Nutr 2020;7:570344. [DOI:10.3389/fnut.2020.570344]
15. Chang C-J, Lin T-L, Tsai Y-L, Wu T-R, Lai W-F, Lu C-C, et al. Next generation probiotics in disease amelioration. J Food Drug Anal 2019;27:615-22. [DOI:10.1016/j.jfda.2018.12.011]
16. Thompson AJ, Spears RJ, Zhu Y, Suits MD, Williams SJ, Gilbert HJ, et al. Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif. Acta Crystallogr D Struct Biol 2018;74:394-404. [DOI:10.1107/S2059798318002942]
17. Carvalho AL, Fonseca S, Miquel-Clopés A, Cross K, Kok K-S, Wegmann U, et al. Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract. J Extracell Vesicles 2019;8:1632100. [DOI:10.1080/20013078.2019.1632100]
18. Huang-Doran I, Zhang C-Y, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017;28:3-18. [DOI:10.1016/j.tem.2016.10.003]
19. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int 2018;2018. [DOI:10.1155/2018/8545347]
20. Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K. Extracellular vesicles: new players in lung immunity. Am J Respir Cell Mol Biol 2018;58:560-65. [DOI:10.1165/rcmb.2017-0293TR]
21. Ashrafian F, Behrouzi A, Badi SA, Davari M, Jamnani FR, Fateh A, et al. Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction. Gastroenterol Hepatol Bed Bench 2019;12:163.
22. Valguarnera E, Scott NE, Azimzadeh P, Feldman MF. Surface exposure and packing of lipoproteins into outer membrane vesicles are coupled processes in Bacteroides. MSphere 2018;3:e00559-18. [DOI:10.1128/mSphere.00559-18]
23. Badi SA, Moshiri A, Marvasti FE, Mojtahedzadeh M, Kazemi V, Siadat SD. Extraction and evaluation of outer membrane vesicles from two important gut microbiota members, Bacteroides fragilis and Bacteroides thetaiotaomicron. Cell J (Yakhteh) 2020;22:344.
24. Wei S-H, Chen Y-P, Chen M-J. Selecting probiotics with the abilities of enhancing GLP-1 to mitigate the progression of type 1 diabetes in vitro and in vivo. Journal of Functional Foods 2015;18:473-86. [DOI:10.1016/j.jff.2015.08.016]
25. DW sJaR, eds. Molecular cloninig:a laboratory manual. 3 ed. New York: Cold Spring Harbor Laboratory Press; 2001.
26. Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol 2019;10:2155. [DOI:10.3389/fmicb.2019.02155]
27. Bonomi L, Brown M, Ungerleider N, Muse M, Matzuk MM, Schneyer A. Activin B regulates islet composition and islet mass but not whole body glucose homeostasis or insulin sensitivity. Am J Physiol Endocrinol Metab 2012;303:E587-96. [DOI:10.1152/ajpendo.00177.2012]
28. Motta EVS, Powell JE, Leonard SP, Moran NA. Prospects for probiotics in social bees. Philos Trans R Soc Lond B Biol Sci 2022;377:20210156. [DOI:10.1098/rstb.2021.0156]
29. Korotkyi O, Huet A, Dvorshchenko K, Kobyliak N, Falalyeyeva T, Ostapchenko L. Probiotic composition and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis. Probiotics Antimicrob Proteins 2021;13:1018-32. [DOI:10.1007/s12602-020-09735-7]
30. Ganguli K, Collado MC, Rautava J, Lu L, Satokari R, von Ossowski I, et al. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatr Res 2015;77:528-35. [DOI:10.1038/pr.2015.5]
31. Zhang B, Zhao J, Jiang M, Peng D, Dou X, Song Y, et al. The Potential Role of Gut Microbial-Derived Exosomes in Metabolic-Associated Fatty Liver Disease: Implications for Treatment. Front Immunol 2022;13. [DOI:10.3389/fimmu.2022.893617]
32. Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 2019;20:4673. [DOI:10.3390/ijms20194673]
33. Van Bergenhenegouwen J, Kraneveld AD, Rutten L, Kettelarij N, Garssen J, Vos AP. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis. PloS One 2014;9:e89121. [DOI:10.1371/journal.pone.0089121]
34. Badi SA, Khatami S, Irani S, Siadat SD. Induction effects of bacteroides fragilis derived outer membrane vesicles on toll like receptor 2, toll like receptor 4 genes expression and cytokines concentration in human intestinal epithelial cells. Cell J (Yakhteh) 2019;21:57.
35. Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, Matencio E, Bernal MJ, Romero F, et al. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PloS One 2013;8:e59370. [DOI:10.1371/journal.pone.0059370]
36. Malago J, Tooten P, Koninkx JF. Anti-inflammatory properties of probiotic bacteria on Salmonella-induced IL-8 synthesis in enterocyte-like Caco-2 cells. Benef Microbes 2010;1:121-30. [DOI:10.3920/BM2009.0021]
37. Tursi A, Brandimarte G, Papa A, Giglio A, Elisei W, Giorgetti GM, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL# 3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2010;105:2218. [DOI:10.1038/ajg.2010.218]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vaezijoze S, Irani S, Siadat S D, Zali M. Investigating the effect of B. thetaiotaomicron and its derivatives on the expression of tlr2 and tlr4 genes in STC-1 cell line. MEDICAL SCIENCES 2023; 33 (1) :1-10
URL: http://tmuj.iautmu.ac.ir/article-1-2066-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 33, Issue 1 (spring 2023) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4570