[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای داوران::
ثبت نام ::
اشتراک::
اطلاعات نمایه::
برای نویسندگان::
لینکهای مفید::
فرآیند چاپ::
پست الکترونیک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 33، شماره 3 - ( پاییز 1402 ) ::
جلد 33 شماره 3 صفحات 218-205 برگشت به فهرست نسخه ها
ارتباط فاکتور ویرولانس جدید تیوردوکسین در سویه های دارای بیماریزایی بالای هلیکوباکتر پیلوری و سرطان معده و اثرات ضد بیوفیلمی ترکیبات زیست فعال طبیعی
عبدالمجید قاسمیان1 ، خلیل شکوهی مصطفوی2 ، ماهرخ مرزی1 ، مهسا رستمی چایجان3 ، مریم کاظمی1 ، الهام زارع نژاد 4
1- مرکز تحقیقات بیماریهای غیرواگیر، دانشگاه علوم پزشکی فسا، فسا، ایران
2- گروه میکروبیولوژی، دانشکده پزشکی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران
3- گروه طب ایرانی، دانشکده پزشکی، دانشگاه علوم پزشکی فسا، فسا، ایران
4- مرکز تحقیقات بیماریهای غیرواگیر، دانشگاه علوم پزشکی فسا، فسا، ایران ، el.zarenezhad@gmail.com
چکیده:   (858 مشاهده)
سابقه و هدف: هلیکوباکتر پیلوری (H. pylori) نقش مهمی در سرطان معده دارد. اثرات ضد باکتریایی و ضد بیوفیلمی داروهای گیاهی در مطالعات مختلف مشخص شده است که در این مطالعه مورد بررسی قرار می­گیرد.
روش بررسی: در این مطالعه مروری، ارتباط هلیکوباکتر پیلوری با سرطان معده و اثرات ضد باکتریایی داروهای گیاهی با استفاده از داده‌های منتشر شده قبلی بررسی شد. واژگان کلیدی شامل هلیکوباکتر پیلوری، فاکتورهای حدت، سرطان معده، تیوردوکسین-1 و داروهای گیاهی بود. موتورهای جستجو شامل «Google»، «Google Scholar»، «PubMed»، «SCOPUS»  و «Web of Science»  بودند. 
یافته­ها: عوامل بیماریزای هلیکوباکتر پیلوری در کنار میزبان و عوامل محیطی باعث ایجاد پیامدهای مختلف در معده می‌شوند. برخی از ترکیبات طبیعی دارای پتانسیل اثرات ضدباکتریایی هستند، به ویژه آنهایی که دارای مقاومت چند دارویی نشان داده و نیز دارای اثرات ضد بیوفیلمی علیه هلیکوباکتر پیلوری هستند. عوامل آنتی بیوفیلم عمدتاً از محصولات طبیعی جدا شده‌اند که بسیاری از آنها متابولیت‌های "ثانویه" مانند فیتوکمیکال‌ها، بیوسورفکتانت‌ها، پپتیدهای ضد میکروبی و آنزیم‌های میکروبی و غیره هستند و می‌توانند توسط میکروارگانیسم‌ها تولید شوند.
نتیجه­گیری: در این مطالعه مشخص شد که فاکتورهای حدت هلیکوباکتر پیلوری مانند تیوردوکسین-1 که اخیراً شناسایی شده است، نقش اساسی در زخم معده و سرطان دارد. داروهای گیاهی دارای ترکیبات فعال زیستی مختلفی هستند که اثرات ضد باکتریایی و ضد بیوفیلمی دارند. فرمولاسیون این ترکیبات می تواند فراهمی زیستی و پایداری در دستگاه گوارش را افزایش دهد.
 
واژه‌های کلیدی: هلیکوباکتر پیلوری، ویرولانس، بیفیلم، ترکیبات طبیعی
متن کامل [PDF 887 kb]   (392 دریافت)    
نيمه آزمايشي : مروري | موضوع مقاله: ميكروبيولوژي
دریافت: 1401/11/7 | پذیرش: 1402/1/30 | انتشار: 1402/7/10
فهرست منابع
1. Mentis A, Lehours P, Mégraud F. Epidemiology and Diagnosis of Helicobacter pylori infection. Helicobacter 2015;20:1-7. [DOI:10.1111/hel.12250]
2. Calvet X, Ramírez Lázaro MJ, Lehours P, Mégraud F. Diagnosis and Epidemiology of Helicobacter pylori Infection. Helicobacter 2013;18:5-11. [DOI:10.1111/hel.12071]
3. Zhang M, Zhou Y-Z, Li X-Y, Tang Z, Zhu H-M, Yang Y, et al. Seroepidemiology of Helicobacter pylori infection in elderly people in the Beijing region, China. World J Gastroenterol 2014;20:3635. [DOI:10.3748/wjg.v20.i13.3635]
4. Valenzuela MA, Canales J, Corvalán AH, Quest AF. Helicobacter pylori-induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol 2015;21:12742. [DOI:10.3748/wjg.v21.i45.12742]
5. Eslami M, Yousefi B, Kokhaei P, Arabkari V, Ghasemian A. Current information on the association of Helicobacter pylori with autophagy and gastric cancer. J Cell Physiol 2019;234:14800-11. [DOI:10.1002/jcp.28279]
6. Yousefi B, Eslami M, Kokhaei P, Valizadeh S, Ghasemian A. Role of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer. Koomesh 2019;21.
7. Shi Y, Liu L, Zhang T, Shen L, Liu L, Zhang J, et al. The involvement of Helicobacter pylori thioredoxin-1 in gastric carcinogenesis. J Med Microbiol 2013;62:1226-34. [DOI:10.1099/jmm.0.056903-0]
8. Liu L-n, Ding S-g, Shi Y-y, Zhang H-j, Zhang J, Zhang C. Helicobacter pylori with high thioredoxin-1 expression promotes stomach carcinogenesis in Mongolian gerbils. Clin Res Hepatol Gastroenterol 2016;40:480-6. [DOI:10.1016/j.clinre.2015.11.001]
9. Guo Y, Ding S. Helicobacter pylori Thioredoxin1 May Play a Highly Pathogenic Role via the IL6/STAT3 Pathway. Gastroenterol Res Pract 2022;2022. [DOI:10.1155/2022/3175935]
10. Sathianarayanan S, Ammanath AV, Biswas R, B A, Sukumaran S, Venkidasamy B. A new approach against Helicobacter pylori using plants and its constituents: A review study. Microb Pathog 2022;168:105594. [DOI:10.1016/j.micpath.2022.105594]
11. Ghasemian A, Fattahi A, Shokouhi Mostafavi SK, Almarzoqi AH, Memariani M, Ben Braiek O, et al. Herbal medicine as an auspicious therapeutic approach for the eradication of Helicobacter pylori infection: A concise review. J Cell Physiol 2019;234:16847-60. [DOI:10.1002/jcp.28363]
12. da Costa DM, dos Santos Pereira E, Rabenhorst SHB. What exists beyond cagA and vacA? Helicobacter pylori genes in gastric diseases. World J Gastroenterol 2015;21:10563. [DOI:10.3748/wjg.v21.i37.10563]
13. Al‐Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, et al. Helicobacter pylori outer inflammatory protein A (O ip A) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017;19:e12771. [DOI:10.1111/cmi.12771]
14. Thi Huyen Trang T, Thanh Binh T, Yamaoka Y. Relationship between vacA types and development of gastroduodenal diseases. Toxins 2016;8:182. [DOI:10.3390/toxins8060182]
15. Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 2014;15:306-16. [DOI:10.1016/j.chom.2014.02.008]
16. Odenbreit S, Püls Jr, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000;287:1497-500. [DOI:10.1126/science.287.5457.1497]
17. Yoon JH, Seo HS, Choi SS, Chae HS, Choi WS, Kim O, et al. Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA. Carcinogenesis 2014;35:2619-29. [DOI:10.1093/carcin/bgu199]
18. Shi Y, Yang Z, Zhang T, Shen L, Li Y, Ding S. SIRT1-targeted miR-543 autophagy inhibition and epithelial-mesenchymal transition promotion in Helicobacter pylori CagA-associated gastric cancer. Cell Death Dis 2019;10:1-14. [DOI:10.1038/s41419-019-1859-8]
19. Guo Y, Zhang T, Shi Y, Zhang J, Li M, Lu F, et al. Helicobacter pylori inhibits GKN1 expression via the CagA/p‐ERK/AUF1 pathway. Helicobacter 2020;25:e12665. [DOI:10.1111/hel.12665]
20. Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T, et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2007;2:250-63. [DOI:10.1016/j.chom.2007.09.005]
21. Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2020;17:50-63. [DOI:10.1038/s41423-019-0339-5]
22. Chauhan N, Tay ACY, Marshall BJ, Jain U. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: An overview. Helicobacter 2019;24:e12544. [DOI:10.1111/hel.12544]
23. Capurro MI, Greenfield LK, Prashar A, Xia S, Abdullah M, Wong H, et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nature Microbiol 2019;4:1411-23. [DOI:10.1038/s41564-019-0441-6]
24. Egan AJ. Bacterial outer membrane constriction. Mol Microbiol 2018;107:676-87. [DOI:10.1111/mmi.13908]
25. Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur J Clin Microbiol Infect Dis 2020;39:1821-30. [DOI:10.1007/s10096-020-03948-y]
26. Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori outer membrane protein-related pathogenesis. Toxins 2017;9:101. [DOI:10.3390/toxins9030101]
27. Bugaytsova JA, Björnham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, et al. Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence. Cell Host Microbe 2017;21:376-89. [DOI:10.1016/j.chom.2017.02.013]
28. Chang W-L, Yeh Y-C, Sheu B-S. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci 2018;25:1-9. [DOI:10.1186/s12929-018-0466-9]
29. Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, et al. Hydrogen metabolism in Helicobacter pylori plays a role in gastric carcinogenesis through facilitating CagA translocation. MBio 2016;7:e01022-16. [DOI:10.1128/mBio.01022-16]
30. Harrer A, Boehm M, Backert S, Tegtmeyer N. Overexpression of serine protease HtrA enhances disruption of adherens junctions, paracellular transmigration and type IV secretion of CagA by Helicobacter pylori. Gut Pathog 2017;9:1-12. [DOI:10.1186/s13099-017-0189-6]
31. Miftahussurur M, Yamaoka Y, Graham DY. Helicobacter pylori as an oncogenic pathogen, revisited. Expert Rev Mol Med 2017;19:e4. [DOI:10.1017/erm.2017.4]
32. Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022;53:33-50. [DOI:10.1007/s42770-021-00675-0]
33. Salvatori S, Marafini I, Laudisi F, Monteleone G, Stolfi C. Helicobacter pylori and Gastric Cancer: Pathogenetic Mechanisms. Int J Mol Sci 2023;24. [DOI:10.3390/ijms24032895]
34. Kao C-Y, Sheu B-S, Wu J-J. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016;39:14-23. [DOI:10.1016/j.bj.2015.06.002]
35. Jeske R, Reininger D, Turgu B, Brauer A, Harmel C, Fernández de Larrea-Baz N, et al. Development of Helicobacter pylori Whole-Proteome Arrays and Identification of Serologic Biomarkers for Noncardia Gastric Cancer in the MCC-Spain Study. Cancer Epidemiol Biomarkers Prev 2020;29:2235-42. [DOI:10.1158/1055-9965.EPI-20-0348]
36. Liu L, Zhang J, Ding S, Zhong LJ, Li G, Shi Y, et al. A comparison of proteomic analysis of Helicobacter pylori in patients with gastritis and gastric cancer between areas of high and low incidence of gastric cancer. Beijing Da Xue Xue Bao Yi Xue Ban 2011;43:827-32. [In Chinese]
37. Song L, Song M, Rabkin CS, Williams S, Chung Y, Van Duine J, et al. Helicobacter pylori immunoproteomic profiles in gastric cancer. J Proteome Res 2020;20:409-19. [DOI:10.1021/acs.jproteome.0c00466]
38. Snider CA, Voss BJ, McDonald WH, Cover TL. Growth phase-dependent composition of the Helicobacter pylori exoproteome. J Proteomics 2016;130:94-107. [DOI:10.1016/j.jprot.2015.08.025]
39. Zhang J, Ding S, Zhong L, Lin S, Yang B, Peng J, et al. Difference analysis on proteome of Helicobacter pylori in patients with peptic ulcer, gastritis, and gastric cancer. Zhonghua yi xue za zhi 2006;86:2690-4.
40. Laurent TC, Moore EC, Reichard P. Enzymatic synthesis of deoxyribonucleotides: IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chemistry 1964;239:3436-44. [DOI:10.1016/S0021-9258(18)97742-2]
41. Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 2010;396:120-4. [DOI:10.1016/j.bbrc.2010.03.083]
42. Dunn LL, Buckle AM, Cooke JP, Ng MK. The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol 2010;30:2089-98. [DOI:10.1161/ATVBAHA.110.209643]
43. Comtois SL, Gidley MD, Kelly DJ. Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 2003;149:121-9. [DOI:10.1099/mic.0.25896-0]
44. Alamuri P, Maier RJ. Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. J Bacteriol 2006;188:5839-50. [DOI:10.1128/JB.00430-06]
45. Kuhns LG, Wang G, Maier RJ. Comparative roles of the two Helicobacter pylori thioredoxins in preventing macromolecule damage. Infect Immun 2015;83:2935-43. [DOI:10.1128/IAI.00232-15]
46. Shi Y, Ding S, Zhang T, Lu F, Zhang J, Wang Y. Cloning of the Helicobacter pylori thioredoxin-1 gene and characterization. Beijing Da Xue Xue Bao Yi Xue Ban 2014;46:190-4.
47. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radical Biol Med 2014;66:75-87. [DOI:10.1016/j.freeradbiomed.2013.07.036]
48. Shi Y, Ding S, Lu F, Zhang J, Chen X, Liu L, et al. Sequence analysis of two different subtypes of thioredoxin gene of Helicobacter pylori. Zhonghua yi xue za zhi. 2010;90:2830-3.
49. Correa P. Helicobacter pylori and gastric carcinogenesis. Am J Surg Pathol 1995;19:S37-43.
50. Okano K, Ivey K, Sugimoto T, Hata Y, Ota S, Terano A, et al. Stimulation of prostaglandin E2 release from cultured rabbit gastric cells by sodium deoxycholate. Prostaglandins 1994;47:423-36. [DOI:10.1016/0090-6980(94)90043-4]
51. David S, Meltzer SJ. Stomach-genetic and epigenetic alterations of preneoplastic and neoplastic lesions. Cancer Biomark 2011;9:493-507. [DOI:10.3233/CBM-2011-0169]
52. Zhao J, Wen S, Wang X, Zhang Z. Helicobacter pylori modulates cyclooxygenase 2 and 15 hydroxy prostaglandin dehydrogenase in gastric cancer. Oncol Lett 2017;14:5519-25. [DOI:10.3892/ol.2017.6843]
53. Wang G, Alamuri P, Maier RJ. The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 2006;61:847-60. [DOI:10.1111/j.1365-2958.2006.05302.x]
54. Chen L, Xie Q-w, Nathan C. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1998;1:795-805. [DOI:10.1016/S1097-2765(00)80079-9]
55. Huang C-H, Chuang M-H, Lo W-L, Wu M-S, Wu Y-H, Wu D-C, et al. Alkylhydroperoxide reductase of Helicobacter pylori as a biomarker for gastric patients with different pathological manifestations. Biochimie 2011;93:1115-23. [DOI:10.1016/j.biochi.2011.03.008]
56. Croxen MA, Ernst PB, Hoffman PS. Antisense RNA modulation of alkyl hydroperoxide reductase levels in Helicobacter pylori correlates with organic peroxide toxicity but not infectivity. J Bacteriol 2007;189:3359-68. [DOI:10.1128/JB.00012-07]
57. Huang C-H, Chiou S-H. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J Med Sci 2011;27:544-53. [DOI:10.1016/j.kjms.2011.06.019]
58. O'Riordan AA, Morales VA, Mulligan L, Faheem N, Windle HJ, Kelleher DP. Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine. Vaccine 2012;30:3876-84. [DOI:10.1016/j.vaccine.2012.04.002]
59. Shi Y-y, Chen M, Zhang Y-x, Zhang J, Ding S-g. Expression of three essential antioxidants of Helicobacter pylori in clinical isolates. J Zhejiang Univ Sci B 2014;15:500-6. [DOI:10.1631/jzus.B1300171]
60. Baker LM, Raudonikiene A, Hoffman PS, Poole LB. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol 2001;183:1961-73. [DOI:10.1128/JB.183.6.1961-1973.2001]
61. Zhang X, Zhang J, Zhang R, Guo Y, Wu C, Mao X, et al. Structural, enzymatic and biochemical studies on Helicobacter pylori arginase. Int J Biochem Cell Biol 2013;45:995-1002. [DOI:10.1016/j.biocel.2013.02.008]
62. Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 2001;98:13844-9. [DOI:10.1073/pnas.241443798]
63. Srivastava A, Meena SK, Alam M, Nayeem SM, Deep S, Sau AK. Structural and functional insights into the regulation of Helicobacter pylori arginase activity by an evolutionary nonconserved motif. Biochemistry 2013;52:508-19. [DOI:10.1021/bi301421v]
64. McGee DJ, Kumar S, Viator RJ, Bolland JR, Ruiz J, Spadafora D, et al. Helicobacter pylori thioredoxin is an arginase chaperone and guardian against oxidative and nitrosative stresses. J Biol Chem 2006;281:3290-6. [DOI:10.1074/jbc.M506139200]
65. Penesyan A, Paulsen IT, Gillings MR, Kjelleberg S, Manefield MJ. Secondary effects of antibiotics on microbial biofilms. Front Microbiol 2020;11:2109. [DOI:10.3389/fmicb.2020.02109]
66. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, et al. The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 2013;15:2865-78. [DOI:10.1111/1462-2920.12155]
67. Krzyżek P, Gościniak G. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. Turk J Gastroenterol 2018;29:7. [DOI:10.5152/tjg.2017.17349]
68. El Mortaji L, Tejada-Arranz A, Rifflet A, Boneca IG, Pehau-Arnaudet G, Radicella JP, et al. A peptide of a type I toxin− antitoxin system induces Helicobacter pylori morphological transformation from spiral shape to coccoids. Proc Natl Acad Sci U S A 2020;117:31398-409. [DOI:10.1073/pnas.2016195117]
69. Lewis K. Persister cellules, la dormance et les maladies infectieuses. Nature 2007;5:48-56.
70. Yonezawa H, Osaki T, Hanawa T, Kurata S, Ochiai K, Kamiya S. Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations. PloS One 2013;8:e73301. [DOI:10.1371/journal.pone.0073301]
71. Cai J, Huang H, Song W, Hu H, Chen J, Zhang L, et al. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm 2015;495:728-37. [DOI:10.1016/j.ijpharm.2015.09.055]
72. Hathroubi S, Zerebinski J, Clarke A, Ottemann KM. Helicobacter pylori biofilm confers antibiotic tolerance in part via a protein-dependent mechanism. Antibiotics 2020;9:355. [DOI:10.3390/antibiotics9060355]
73. Ma J-F, Hager PW, Howell ML, Phibbs PV, Hassett DJ. Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat). J Bacteriol 1998;180:1741-9. [DOI:10.1128/JB.180.7.1741-1749.1998]
74. Clardy J, Fischbach MA, Currie CR. The natural history of antibiotics. Curr Biol 2009;19:1-8. [DOI:10.1016/j.cub.2009.04.001]
75. Melander RJ, Basak AK, Melander C. Natural products as inspiration for the development of bacterial antibiofilm agents. Nat prod Rep 2020;37:1454-77. [DOI:10.1039/D0NP00022A]
76. Carradori S, Di Giacomo N, Lobefalo M, Luisi G, Campestre C, Sisto F. Biofilm and quorum sensing inhibitors: The road so far. Expert Opin Ther Pat 2020;30:917-30. [DOI:10.1080/13543776.2020.1830059]
77. Maccelli A, Carradori S, Puca V, Sisto F, Lanuti P, Crestoni ME, et al. Correlation between the antimicrobial activity and metabolic profiles of cell free supernatants and membrane vesicles produced by Lactobacillus reuteri DSM 17938. Microorganisms 2020;8:1653. [DOI:10.3390/microorganisms8111653]
78. Di Lodovico S, Napoli E, Di Campli E, Di Fermo P, Gentile D, Ruberto G, et al. Pistacia vera L. oleoresin and levofloxacin is a synergistic combination against resistant Helicobacter pylori strains. Sci Rep 2019;9:1-10. [DOI:10.1038/s41598-019-40991-y]
79. Luo P, Huang Y, Hang X, Tong Q, Zeng L, Jia J, et al. Dihydrotanshinone I is effective against drug-resistant Helicobacter pylori in vitro and in vivo. Antimicrob Agents Chemother 2021;65:e01921-20. [DOI:10.1128/AAC.01921-20]
80. Bai CL, Osaki T, Yonezawa H, Hanawa T, Zaman C, Kurata S, et al. In vitro and in vivo effects of the Mongolian drug Amu‐ru 7 on Helicobacter pylori growth and viability. Microbiol Immunol 2010;54:508-15. [DOI:10.1111/j.1348-0421.2010.00246.x]
81. Spósito L, Oda FB, Vieira JH, Carvalho FA, dos Santos Ramos MA, de Castro RC, et al. In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. J Ethnopharmacol 2019;233:1-12. [DOI:10.1016/j.jep.2018.12.032]
82. Jia J, Zhang C, Liu Y, Huang Y, Bai Y, Hang X, et al. Armeniaspirol A: a novel anti‐Helicobacter pylori agent. Microb Biotechnol 2022;15:442-54. [DOI:10.1111/1751-7915.13807]
83. Cataldi V, Di Bartolomeo S, Di Campli E, Nostro A, Cellini L, Di Giulio M. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases. Int J Immunopathol Pharmacol 2015;28:595-602. [DOI:10.1177/0394632015600594]
84. Graham DY. Efficient identification and evaluation of effective Helicobacter pylori therapies. Clin Gastroenterol Hepatol 2009;7:145-8. [DOI:10.1016/j.cgh.2008.10.024]
85. Mégraud F, Lehours P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev 2007;20:280-322. [DOI:10.1128/CMR.00033-06]
86. Vagarali M, Metgud S, Bannur H, Karadesai S, Nagmoti J. Clinical significance of various diagnostic techniques and emerging antimicrobial resistance pattern of Helicobacter pylori from gastric biopsy samples. Indian J Med Microbiol 2015;33:560-4. [DOI:10.4103/0255-0857.167349]
87. Jin F, Yang H. Effects of Lactobacillus salivarius LN12 in Combination with amoxicillin and clarithromycin on Helicobacter pylori biofilm in vitro. Microorganisms 2021;9:1611. [DOI:10.3390/microorganisms9081611]
88. Krzyżek P, Migdał P, Paluch E, Karwańska M, Wieliczko A, Gościniak G. Myricetin as an antivirulence compound interfering with a morphological transformation into coccoid forms and potentiating activity of antibiotics against Helicobacter pylori. Int J Mol Sci 2021;22:2695. [DOI:10.3390/ijms22052695]
89. Krzyżek P, Junka A, Słupski W, Dołowacka-Jóźwiak A, Płachno BJ, Sobiecka A, et al. Antibiofilm and antimicrobial-enhancing activity of Chelidonium majus and Corydalis cheilanthifolia extracts against multidrug-resistant Helicobacter pylori. Pathogens 2021;10:1033. [DOI:10.3390/pathogens10081033]
90. Yu M, Wang X, Ling F, Wang H, Zhang P, Shao S. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm. Microb Pathog 2019;135:103641. [DOI:10.1016/j.micpath.2019.103641]
91. Vetvicka V, Vetvickova J, Fernandez-Botran R. Effects of curcumin on Helicobacter pylori infection. Ann Transl Med 2016;4. [DOI:10.21037/atm.2016.12.52]
92. Krzyżek P, Gościniak G, Fijałkowski K, Migdał P, Dziadas M, Owczarek A, et al. Potential of bacterial cellulose chemisorbed with anti-metabolites, 3-bromopyruvate or sertraline, to fight against helicobacter pylori lawn biofilm. Int J Mol Sci 2020;21:9507. [DOI:10.3390/ijms21249507]
93. Zhang L, Wu WK, Gallo RL, Fang EF, Hu W, Ling TK, et al. Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection. J Immunol 2016;196:1799-809. [DOI:10.4049/jimmunol.1500021]
94. Bugli F, Palmieri V, Torelli R, Papi M, De Spirito M, Cacaci M, et al. In vitro effect of clarithromycin and alginate lyase against Helicobacter pylori biofilm. Biotechnol Prog 2016;32:1584-91. [DOI:10.1002/btpr.2339]
95. Trung HT, Huynh HTT, Thuy LNT, Van Minh HN, Nguyen M-NT, Thi MNL. Growth-inhibiting, bactericidal, antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive-and resistant-strains of Helicobacter pylori. ACS Omega 2020;5:20080. [DOI:10.1021/acsomega.0c01640]
96. Chen X, Li P, Shen Y, Zou Y, Yuan G, Hu H. Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro: A comparison with conventional triple therapy. Microb Pathog 2019;131:112-9. [DOI:10.1016/j.micpath.2019.04.001]
97. Shen Y, Li P, Chen X, Zou Y, Li H, Yuan G, et al. Activity of sodium lauryl sulfate, rhamnolipids, and N-acetylcysteine against biofilms of five common pathogens. Microb Drug Resist 2020;26:290-9. [DOI:10.1089/mdr.2018.0385]
98. Di Fermo P, Di Lodovico S, Amoroso R, De Filippis B, D'Ercole S, Di Campli E, et al. Searching for new tools to counteract the Helicobacter pylori resistance: the positive action of resveratrol derivatives. Antibiotics 2020;9:891. [DOI:10.3390/antibiotics9120891]
99. Zamani H, Rahbar S, Garakoui SR, Afsah Sahebi A, Jafari H. Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens. Pharmaceut Biomed Res 2017;3:39-44. [DOI:10.29252/pbr.3.2.39]
100. Wylie MR, Windham IH, Blum FC, Wu H, Merrell DS. In vitro antibacterial activity of nimbolide against Helicobacter pylori. J Ethnopharmacol 2022;285:114828. [DOI:10.1016/j.jep.2021.114828]
101. Grande R, Carradori S, Puca V, Vitale I, Angeli A, Nocentini A, et al. Selective inhibition of helicobacter pylori carbonic anhydrases by carvacrol and thymol could impair biofilm production and the release of outer membrane vesicles. Int J Mol Sci 2021;22:11583. [DOI:10.3390/ijms222111583]
102. Spiegel M, Krzyżek P, Dworniczek E, Adamski R, Sroka Z. In silico screening and in vitro assessment of natural products with anti-virulence activity against Helicobacter pylori. Molecules 2021;27:20. [DOI:10.3390/molecules27010020]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemian A, Shokouhi Mostafavi S K, Marzi M, Rostami Chijan M, Kazemi M, Zarenezhad E. The association of thioredoxin novel virulence factor in highly virulent Helicobacter pylori and gastric cancer and the anti-biofilm effects of natural bioactive compounds. MEDICAL SCIENCES 2023; 33 (3) :205-218
URL: http://tmuj.iautmu.ac.ir/article-1-2079-fa.html

قاسمیان عبدالمجید، شکوهی مصطفوی خلیل، مرزی ماهرخ، رستمی چایجان مهسا، کاظمی مریم، زارع نژاد الهام. ارتباط فاکتور ویرولانس جدید تیوردوکسین در سویه های دارای بیماریزایی بالای هلیکوباکتر پیلوری و سرطان معده و اثرات ضد بیوفیلمی ترکیبات زیست فعال طبیعی. فصلنامه علوم پزشکی دانشگاه آزاد اسلامی تهران. 1402; 33 (3) :205-218

URL: http://tmuj.iautmu.ac.ir/article-1-2079-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 33، شماره 3 - ( پاییز 1402 ) برگشت به فهرست نسخه ها
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645