[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 1 (spring 2024) ::
MEDICAL SCIENCES 2024, 34(1): 25-36 Back to browse issues page
The effect of interval training and omega-3 on endoplasmic reticulum stress in the liver tissue of nonalcoholic fatty liver disease (NAFLD) rats
Mostafa Kazemi1 , Ahmad Abdi 2, Alireaz Barari3 , Javad Mehrabani4
1- PhD Candidate, Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2- Department of Sport Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran , a.abdi58@gmail.com
3- Department of Sport Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
4- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
Abstract:   (864 Views)
Background: Endoplasmic reticulum stress (ERS) plays an important role in the development of non-alcoholic fatty liver disease (NAFLD). In this study, the effect of omega-3 consumption and interval exercise alone or in combination on ERS in rats with NAFLD was investigated.
Materials and methods: In this experimental study, 40 male Wistar rats (mean weight 156.98±7.82) were divided into 5 groups: Control-Normal (CN), NAFLD, NAFLD-Training (TRNAF), NAFLD-Supplement (SUPNAF) and NAFLD-Training-Supplement (TRSUPNAF). The supplement groups received 1 g of Omega3 (per kg of body weight) orally during the intervention period. Interval training program including running on treadmill with a speed of 14-28 meters per minute, was performed 5 days a week for eight weeks.
Results: Induction of NAFLD increased GRP78, CHOP, ALT and AST (p=0.0001). The expression of GRP78 and CHOP was significantly decreased in TRNAF (p=0.0001 and p=0.001 respectively) and SUPNAF (p=0.0001 and p=0.001 respectively) groups compared to NAFLD. ALT and AST also significantly decreased in TRNAF (p=0.0001 and p=0.0001) and SUPNAF (p=0.0001 and p=0.001 respectively) groups. The combined intervention of interval training with omega-3 supplement was not significant compared to the effect of each intervention alone on GRP78, CHOP, ALT and AST (p<0.05).
Conclusion: Interval training and omega-3 consumption inhibited ER stress in liver tissue through reduction in GRP78 and CHOP expression. However, the simultaneous effect of interval training and omega-3 on ERS needs more research.
 
Keywords: Exercise, Omega-3, GRP78, CHOP, Nonalcoholic fatty liver disease.
Full-Text [PDF 402 kb]   (331 Downloads)    
Semi-pilot: Experimental | Subject: Nutrition Sciences
Received: 2023/05/15 | Accepted: 2023/09/2 | Published: 2024/02/29
References
1. Liu K, McCaughan GW. Epidemiology and etiologic associations of non-alcoholic fatty liver disease and associated HCC. Adv Exp Med Biol 2018;1061:3-18. [DOI:10.1007/978-981-10-8684-7_2]
2. Schwenger KJ, Fischer SE, Jackson TD, Okrainec A, Allard JP. Non-alcoholic fatty liver disease in morbidly obese individuals undergoing bariatric surgery: prevalence and effect of the pre-bariatric very low calorie diet. Obes Surg 2018;28:1109-16. [DOI:10.1007/s11695-017-2980-3]
3. Younossi ZM. Non-alcoholic fatty liver disease-a global public health perspective. J Hepatol 2019;70:531-44. [DOI:10.1016/j.jhep.2018.10.033]
4. Kaneko M, Imaizumi K, Saito A, Kanemoto S, Asada R, Matsuhisa K, et al. ER stress and disease: toward prevention and treatment. Biol Pharm Bull 2017;40:1337-43. [DOI:10.1248/bpb.b17-00342]
5. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018;69:927-47. [DOI:10.1016/j.jhep.2018.06.008]
6. Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 2017;13:681-96. [DOI:10.1038/nrneph.2017.129]
7. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015;149:367-78. e5. [DOI:10.1053/j.gastro.2015.04.005]
8. Marques C, Motta V, Torres T, Aguila M, Mandarim-de-Lacerda C. Beneficial effects of exercise training (treadmill) on insulin resistance and nonalcoholic fatty liver disease in high-fat fed C57BL/6 mice. Braz J Med Biol Res 2010;43:467-75. [DOI:10.1590/S0100-879X2010007500030]
9. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 2015;10:173. [DOI:10.1146/annurev-pathol-012513-104649]
10. Deldicque L, Cani PD, Delzenne NM, Baar K, Francaux M. Endurance training in mice increases the unfolded protein response induced by a high-fat diet. J Physiol Biochem 2013;69:215-25. [DOI:10.1007/s13105-012-0204-9]
11. Kristensen CM, Brandt CT, Ringholm S, Pilegaard H. PGC-1α in aging and lifelong exercise training-mediated regulation of UPR in mouse liver. Exp Gerontol 2017;98:124-33. [DOI:10.1016/j.exger.2017.08.006]
12. Boslem E, MacIntosh G, Preston AM, Bartley C, Busch AK, Fuller M, et al. A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J 2011;435:267-76. [DOI:10.1042/BJ20101867]
13. Zhang Y, Dong L, Yang X, Shi H, Zhang L. α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes. Lipids Health Dis 2011;10:1-6. [DOI:10.1186/1476-511X-10-81]
14. Iizuka Y, Kim H, Izawa T, Sakurai K, Hirako S, Wada M, Matsumoto A. Protective effects of fish oil and pioglitazone on pancreatic tissue in obese KK mice with type 2 diabetes. Prostaglandins Leukot Essent Fatty Acids 2016;115:53-59. doi: 10.1016/j.plefa.2016.10.007. [DOI:10.1016/j.plefa.2016.10.007]
15. Efati M, Khorrami M, Zarei Mahmmodabadi A, Raouf Sarshoori J. Induction of an Animal Model of Non-Alcoholic Fatty Liver Disease Using a Formulated High-Fat Diet. J Babol Uni Med Sci 2016;18:57-62. [In Persian]
16. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, et al. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav 2018;184:6-11. [DOI:10.1016/j.physbeh.2017.10.027]
17. de Andrade AM, Fernandes MdC, de Fraga LS, Porawski M, Giovenardi M, Guedes RP. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats. Metab Brain Dis 2017;32:1871-81. [DOI:10.1007/s11011-017-0080-7]
18. Lei ZX, Wang JJ, Li K, Liu P. Herp knockout protects against nonalcoholic fatty liver disease in mice on a high fat diet. Kaohsiung J Med Sci 2021;37:487-96. [DOI:10.1002/kjm2.12349]
19. Mansour SZ, Moustafa EM, Moawed FS. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones 2022;27:499-511. [DOI:10.1007/s12192-022-01286-w]
20. Sathyanarayana AR, Lu C-K, Liaw C-C, Chang C-C, Han H-Y, Green BD, et al. 1, 2, 3, 4, 6-Penta-O-galloyl-d-glucose Interrupts the Early Adipocyte Lifecycle and Attenuates Adiposity and Hepatic Steatosis in Mice with Diet-Induced Obesity. Int J Mol Sci 2022;23:4052. [DOI:10.3390/ijms23074052]
21. Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena-Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 2014;5:e1179. [DOI:10.1038/cddis.2014.162]
22. Eliades M, Spyrou E, Agrawal N, Lazo M, Brancati F, Potter J, et al. Meta‐analysis: vitamin D and non‐alcoholic fatty liver disease. Aliment Pharmacol Ther 2013;38:246-54. [DOI:10.1111/apt.12377]
23. Li J, Huang L, Xiong W, Gu C, Zhang S, Xue X. Effect of aerobic exercise on GRP78 and ATF6 expressions in mice with non-alcoholic fatty liver disease. Sport Med Health Sci 2022;22. [In Press] [DOI:10.1016/j.smhs.2022.11.002]
24. Tan N, Li X, Zhai L, Liu D, Li J, Yokota H, et al. Effects of knee loading on obesity‐related non‐alcoholic fatty liver disease in an ovariectomized mouse model with high‐fat diet. Hepatol Res 2018;48:839-49. [DOI:10.1111/hepr.13076]
25. Li J, Huang L, Xiong W, Qian Y, Song M. Aerobic exercise improves non-alcoholic fatty liver disease by down-regulating the protein expression of the CNPY2-PERK pathway. Biochem Biophys Res Commun 2022;603:35-40. [DOI:10.1016/j.bbrc.2022.03.008]
26. Paes L, Lima D, Matsuura C, de Souza MdG, Cyrino F, Barbosa C, et al. Effects of moderate and high intensity isocaloric aerobic training upon microvascular reactivity and myocardial oxidative stress in rats. PloS One 2020;15:e0218228. [DOI:10.1371/journal.pone.0218228]
27. Magholi AA, Abdi A, Abbasi daloii A. The Effect of Eight Weeks of Aerobic Training and Royal Jelly on Oxidative Stress and Liver Tissue Enzymes in Obese Rats. J Sport Biosci 2022;14:29-42. [In Persian]
28. Zou Y, Qi Z. Understanding the role of exercise in nonalcoholic fatty liver disease: ers-linked molecular pathways. Mediators Inflamm 2020;2020. [DOI:10.1155/2020/6412916]
29. Estébanez B, De Paz JA, Cuevas MJ, González-Gallego J. Endoplasmic reticulum unfolded protein response, aging and exercise: An update. Front Physiol 2018;9:1744. [DOI:10.3389/fphys.2018.01744]
30. Wires ES, Trychta KA, Bäck S, Sulima A, Rice KC, Harvey BK. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. J Hepatol 2017;67:1009-17. [DOI:10.1016/j.jhep.2017.05.023]
31. Chapados NA, Lavoie JM. Exercise training increases hepatic endoplasmic reticulum (er) stress protein expression in MTP‐inhibited high‐fat fed rats. Cell Biochem Funct 2010;28:202-10. [DOI:10.1002/cbf.1643]
32. Okada LSdRR, Oliveira CP, Stefano JT, Nogueira MA, da Silva IDCG, Cordeiro FB, et al. Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH-proteomic and lipidomic insight. Clin Nutr 2018;37:1474-84. [DOI:10.1016/j.clnu.2017.08.031]
33. Herrema H, Zhou Y, Zhang D, Lee J, Hernandez MAS, Shulman GI, et al. XBP1s is an anti-lipogenic protein. J Biol Chem 2016;291:17394-404. [DOI:10.1074/jbc.M116.728949]
34. Li H, Min Q, Ouyang C, Lee J, He C, Zou M-H, et al. AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochim Biophys Acta 2014;1842:1844-54. [DOI:10.1016/j.bbadis.2014.07.002]
35. Kandeil MA, Hashem RM, Mahmoud MO, Hetta MH, Tohamy MA. Zingiber officinale extract and omega‐3 fatty acids ameliorate endoplasmic reticulum stress in a nonalcoholic fatty liver rat model. J Food Biochem 2019;43:e13076. [DOI:10.1111/jfbc.13076]
36. Han H, Guo Y, Li X, Shi D, Xue T, Wang L, et al. Plant sterol ester of α-linolenic acid attenuates nonalcoholic fatty liver disease by rescuing the adaption to endoplasmic reticulum stress and enhancing mitochondrial biogenesis. Oxid Med Cell Longev 2019; 2019:8294141. [DOI:10.1155/2019/8294141]
37. Zhang Y, Yang X, Shi H, Dong L, Bai J. Effect of α-linolenic acid on endoplasmic reticulum stress-mediated apoptosis of palmitic acid lipotoxicity in primary rat hepatocytes. Lipids Health Dis 2011;10:1-6. [DOI:10.1186/1476-511X-10-122]
38. Flister KFT, Pinto BAS, França LM, Coêlho CFF, Dos Santos PC, Vale CC, et al. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem 2018;62:155-66. [DOI:10.1016/j.jnutbio.2018.09.007]
39. Zhang X-Q, Xu C-F, Yu C-H, Chen W-X, Li Y-M. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World journal of gastroenterology 2014;20:1768. [DOI:10.3748/wjg.v20.i7.1768]
40. Lebeaupin C, Proics E, De Bieville C, Rousseau D, Bonnafous S, Patouraux S, et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 2015;6:e1879-e. [DOI:10.1038/cddis.2015.248]
41. Kumar N, Gupta G, Anilkumar K, Fatima N, Karnati R, Reddy GV, et al. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci Rep 2016;6:1-14. [DOI:10.1038/srep31649]
42. Gonçalves NB, Bannitz RF, Silva BR, Becari DD, Poloni C, Gomes PM, et al. α-Linolenic acid prevents hepatic steatosis and improves glucose tolerance in mice fed a high-fat diet. Clinics 2018;73:e150. [DOI:10.6061/clinics/2018/e150]
43. Kao R-H, Lai G-M, Chow J-M, Liao C-H, Zheng Y-M, Tsai W-L, et al. Opposite regulation of CHOP and GRP78 and synergistic apoptosis induction by selenium Yeast and Fish Oil via AMPK activation in lung adenocarcinoma cells. Nutrients 2018;10:1458. [DOI:10.3390/nu10101458]
44. Yang J, Sáinz N, Félix-Soriano E, Gil-Iturbe E, Castilla-Madrigal R, Fernández-Galilea M, et al. Effects of long-term DHA supplementation and physical exercise on non-alcoholic fatty liver development in obese aged female mice. Nutrients 2021;13:501. [DOI:10.3390/nu13020501]
45. Miotto PM, Horbatuk M, Proudfoot R, Matravadia S, Bakovic M, Chabowski A, et al. α-Linolenic acid supplementation and exercise training reveal independent and additive responses on hepatic lipid accumulation in obese rats. Am J Physiol Endocrinol Metab 2017;312:E461-E70. [DOI:10.1152/ajpendo.00438.2016]
46. Leclerc GM, Leclerc GJ, Kuznetsov JN, DeSalvo J, Barredo JC. Metformin induces apoptosis through AMPK-dependent inhibition of UPR signaling in ALL lymphoblasts. PloS One 2013;8:e74420. [DOI:10.1371/journal.pone.0074420]
47. Liu L, Hu Q, Wu H, Wang X, Gao C, Chen G, et al. Dietary DHA/EPA ratio changes fatty acid composition and attenuates diet-induced accumulation of lipid in the liver of ApoE−/− mice. Oxid Med Cell Longev 2018;2018. [DOI:10.1155/2018/6256802]
48. Guarino M, Kumar P, Felser A, Terracciano LM, Guixé-Muntet S, Humar B, et al. Exercise attenuates the transition from fatty liver to steatohepatitis and reduces tumor formation in mice. Cancers 2020;12:1407. [DOI:10.3390/cancers12061407]
49. Balakrishnan M, Patel P, Dunn-Valadez S, Dao C, Khan V, Ali H, et al. Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease but a Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2021;19:61-71. [DOI:10.1016/j.cgh.2020.04.067]
50. Spruss A, Henkel J, Kanuri G, Blank D, Püschel GP, Bischoff SC, et al. Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Mol Med 2012;18:1346-55. [DOI:10.2119/molmed.2012.00223]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemi M, Abdi A, Barari A, Mehrabani J. The effect of interval training and omega-3 on endoplasmic reticulum stress in the liver tissue of nonalcoholic fatty liver disease (NAFLD) rats. MEDICAL SCIENCES 2024; 34 (1) :25-36
URL: http://tmuj.iautmu.ac.ir/article-1-2105-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 1 (spring 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660