1- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran , el.zarenezhad@gmail.com 2- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran 3- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 4- Department of Persian Medicine, Fasa University of Medical Sciences, Fasa, Iran
Abstract: (935 Views)
Background: 3,2,1 triazoles are an important class of five-membered heterocyclic compounds whose unique biological properties have made them an important class of chemical compounds. The biological activity of these compounds is known as anti-fungal, anti-bacterial, anti-tumor, anti-inflammatory, anti-depressant, anti-tuberculosis, anti-HIV, etc. Materials and methods: In this research, first we synthesized new courcomin catalyst. We investigated synthesis of some 1,2,3 triazol derivatives and evaluated their anti-bacterial and anti-fungal effects. After synthesis and purification ofsome 1,2,3-triazol compound, the inhibitory effect of compounds against fungal (Candidaalbicans, Aspergillus niger) and against bacterial (Staphylococcus arueus and Escherichia coli) was evaluated. Results: It was found that compound (3): 1-(4-bromobenzyl)-1H-1,2,3-triazol-4-ol exhibited the best antifungal activities. Also this compound showed good activity against Staphylococcus areus as a Gram-positive bacteria. Conclusion: According to the results, it seems that the use of recombinant substance 3 as a new compound with acceptable antimicrobial properties can be considered
1. Marzi M, Farjam M, Kazeminejad Z, Shiroudi A, Kouhpayeh A, Zarenezhad E. A recent overview of 1, 2, 3-triazole-containing hybrids as novel antifungal agents: focusing on synthesis, mechanism of action, and structure-activity relationship (SAR). J Chem 2022;2022:1-50. [DOI:10.1155/2022/7884316]
2. Huisgen R. Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure Appl Chem 1989;61:613-28. [DOI:10.1351/pac198961040613]
4. Afsarian MH, Farjam M, Zarenezhad E, Behrouz S, Rad MNS. Synthesis, antifungal evaluation and molecular docking studies of some tetrazole derivatives. Acta Chimica Slovenica 2019;66:874-87. [DOI:10.17344/acsi.2019.4992]
5. Kazeminejad Z, Marzi M, Shiroudi A, Kouhpayeh SA, Farjam M, Zarenezhad E. Novel 1, 2, 4-Triazoles as Antifungal Agents. BioMed Res Int 2022;2022. [DOI:10.1155/2022/4584846]
6. Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 2013;113:4905-79. [DOI:10.1021/cr200409f]
7. Bräse S, Gil C, Knepper K, Zimmermann V. Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed Engl 2005;44:5188-240. [DOI:10.1002/anie.200400657]
8. Khosravi A, Malecan M. Effects of Lavandula stoechas extracts on staphylococcus aureus and other gram negative bacteria. J Inflam Dis 2004;7:3-9.
9. Fleming A. The true history of the discovery of penicillin. Biomed Sci 2003:247.
11. Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microb Rev 1999;12:40-79. [DOI:10.1128/CMR.12.1.40]
12. Warnock D. Itraconazole and fluconazole: new drugs for deep fungal infection. J Antimicrob Chemother 1989;24:275-6. [DOI:10.1093/jac/24.3.275]
13. Behrouz S, Rad MNS, Rostami S, Behrouz M, Zarehnezhad E, Zarehnezhad A. Design, synthesis, and biological activities of novel azole-bonded β-hydroxypropyl oxime O-ethers. Mol Divers 2014;18:797-808. [DOI:10.1007/s11030-014-9539-1]
14. Rad MNS, Behrouz S, Behrouz M, Sami A, Mardkhoshnood M, Zarenezhad A, et al. Design, synthesis and biological evaluation of novel 1, 2, 3-triazolyl β-hydroxy alkyl/carbazole hybrid molecules. Mol Divers 2016;20:705-18. [DOI:10.1007/s11030-016-9678-7]
15. Zarenezhad E, Soltani Rad MN, Behrouz S, Esmaielzadeh S, Farjam M. Immobilized [Cu (cdsalMeen)] on silica gel: a highly efficient heterogeneous catalyst for 'Click'[3+ 2] Huisgen cycloaddition. J Iran Chem Soc 2017;14:509-19. [DOI:10.1007/s13738-016-0999-3]
16. Rajesh J, Gubendran A, Rajagopal G, Athappan P. Synthesis, spectra and DNA interactions of certain mononuclear transition metal (II) complexes of macrocyclic tetraaza diacetyl curcumin ligand. J Mol Struc 2012;1010:169-78. [DOI:10.1016/j.molstruc.2011.12.002]
17. Foroughi HO, Kargar M, Erjaee Z, Zarenezhad E. One-pot three-component reaction for facile and efficient green synthesis of chromene pyrimidine-2, 4-dione derivatives and evaluation of their anti-bacterial activity. Monatsh Chem 2020;151:1603-8. [DOI:10.1007/s00706-020-02692-5]
18. Hashemi E, Beheshtiha YS, Ahmadi S, Heravi MM. In situ prepared CuI nanoparticles on modified poly (styrene-co-maleic anhydride): An efficient and recyclable catalyst for the azide-alkyne click reaction in water. Transit Met Chem 2014;39:593-601. [DOI:10.1007/s11243-014-9838-5]
19. Tourani H, Naimi-Jamal MR, Panahi L, Dekamin M. Nanoporous metal-organic framework Cu2 (BDC) 2 (DABCO) as an efficient heterogeneous catalyst for one-pot facile synthesis of 1, 2, 3-triazole derivatives in ethanol: Evaluating antimicrobial activity of the novel derivatives. Sci Iran 2019;26:1485-96. [DOI:10.24200/sci.2018.50731.1841]
20. Sharghi H, Khalifeh R, Doroodmand MM. Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1, 2, 3‐Triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a "Green" solvent. Advanced Synthesis and Catalysis 2009;351:207-18. [DOI:10.1002/adsc.200800612]
21. Zohreh N, Hosseini SH, Pourjavadi A, Bennett C. Immobilized copper (II) on nitrogen‐rich polymer‐entrapped Fe3O4 nanoparticles: a highly loaded and magnetically recoverable catalyst for aqueous click chemistry. Appl Organomet Chem 2016;30:73-80. [DOI:10.1002/aoc.3398]
22. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, et al. Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 2005;127:210-6. [DOI:10.1021/ja0471525]
23. Orozco AS, Higginbotham LM, Hitchcock CA, Parkinson T, Falconer D, Ibrahim AS, et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother 1998;42:2645-9. [DOI:10.1128/AAC.42.10.2645]
24. Zarenezhad E, Abdulabbas HT, Marzi M, Ghazy E, Ekrahi M, Pezeshki B, et al. Nickel nanoparticles: applications and antimicrobial role against methicillin-resistant Staphylococcus aureus infections. Antibiotics 2022;11:1208. [DOI:10.3390/antibiotics11091208]
25. Hoolageri SR, Nesaragi AR, Kamble RR, Dixit S, Vootla S, Joshi SD, et al. Green Synthesis of Novel Triazolothiadiazine‐Coumarins Catalyzed by Agro Waste Extract: An Approach towards In‐Silico and In‐Vitro Anti‐Fungal Activity. Chemistryselect.2022;7:e202200077. [DOI:10.1002/slct.202200077]
26. Strzelecka M, Świątek P. 1, 2, 4-Triazoles as important antibacterial agents. Pharmaceuticals 2021;14:224. [DOI:10.3390/ph14030224]
27. Patil SA, Nesaragi AR, Rodríguez-Berrios RR, Hampton SM, Bugarin A, Patil SA. Coumarin triazoles as potential antimicrobial agents. Antibiotics 2023;12:160. [DOI:10.3390/antibiotics12010160]
28. Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm 2018;351:e1800141. [DOI:10.1002/ardp.201800141]
29. Gondru R, Kanugala S, Raj S, Ganesh Kumar C, Pasupuleti M, Banothu J, et al. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorganic Med Chem Lett 2021;33:127746. [DOI:10.1016/j.bmcl.2020.127746]
Zarenezhad E, Ghasemian A, Iraji A, Rostami chijan M, Kazemi M, Haghjoo E. Synthesis of 1-aryl 4-phenyl 1,2,3-triazols and Investigating Anti-Fungal and Anti-Bacterial Activity in In Vitro Conditions. MEDICAL SCIENCES 2024; 34 (1) :46-55 URL: http://tmuj.iautmu.ac.ir/article-1-2116-en.html