[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 4 (winter 2024) ::
MEDICAL SCIENCES 2024, 34(4): 365-374 Back to browse issues page
Protective and anti-inflammatory effect of trans-cinnamic acid on hippocampus cell damage and fetal forebrain neuroinflammation in preeclampsia model rats
Tahereh Jaidari1 , Mehrdad Shariati 2, Mohammad Amin Edalatmanesh3
1- PhD Candidate in Cell and Developmental Biology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran,
2- Associate Professor of in Cell and Developmental Biology, Department of Biology, College of Sciences, Kazeroon , mehrdadshariati@hotmail.com
3- Associate Professor of Physiology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Abstract:   (341 Views)
Background: Pre-eclampsia (PE) can cause brain damage before birth. However, its mechanism is not clear. The present study evaluated the effect of cinnamic acid (CIN) on the expression of inflammatory cytokines of the forebrain and neuronal damage in the hippocampus of PE model fetuses induced with l-NAME.
Materials and methods: 25 pregnant female rats were randomly divided into 5 groups: control group (no treatment), PE+NS group (daily injection of 250 mg l-NAME from embryonic day (ED) 15 to 20 to induce PE and then one hour later normal saline gavage), PE+CIN25, PE+CIN50 and PE+CIN100 groups (CIN gavage with doses of 25, 50 and 100 mg, respectively, one hour after l-NAME injection). On the ED21, after cesarean section, the fetal brain was dissected. The content of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin-1 beta (IL-1β) in the forebrain and cell density in the CA1 and CA3 regions of the fetal hippocampus were measured.
Results: A significant increase in TNF-α, IL-6 and IL-1β in the forebrain along with a decrease in neuronal density in the CA1/CA3 regions was seen in the PE+NS group compared to the control group (p<0.05). While in the groups receiving CIN, they showed a significant decrease in TNF-α, IL-6 and IL-1β in the forebrain and an increase in CA1/CA3 neuronal density compared to the PE+NS group (p<0.05).
Conclusion: CIN improved the inflammation and reduced cell damage in the hippocampus of PE model fetuses through modulating the level of anti-inflammatory cytokines in the fetal forebrain.
 
Keywords: Preeclampsia, Cinnamic acid, Neuroinflammation, Hippocampus, Fetus
Full-Text [PDF 988 kb]   (141 Downloads)    
Semi-pilot: Experimental | Subject: Animal Biology
Received: 2023/12/1 | Accepted: 2024/02/18 | Published: 2024/11/30
References
1. Ma'ayeh M, Costantine MM. Prevention of preeclampsia. Semin Fetal Neonatal Med 2020;25:101123. [DOI:10.1016/j.siny.2020.101123]
2. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J Am Coll Cardiol 2020 Oct 6;76:1690-1702. [DOI:10.1016/j.jacc.2020.08.014]
3. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res 2019;124:1094-1112. [DOI:10.1161/CIRCRESAHA.118.313276]
4. Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med 2018;23:119-125. [DOI:10.1016/j.siny.2017.11.004]
5. Ramos JGL, Sass N, Costa SHM. Preeclampsia. Rev Bras Ginecol Obstet 2017;39:496-512. [DOI:10.1055/s-0037-1604471]
6. Filipek A, Jurewicz E. Preeclampsia - a disease of pregnant women. Postepy Biochem 2018;64:232-229. [In Polish] [DOI:10.18388/pb.2018_146]
7. Bokslag A, van Weissenbruch M, Mol BW, de Groot CJ. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev 2016;102:47-50. [DOI:10.1016/j.earlhumdev.2016.09.007]
8. Joo EH, Kim YR, Kim N, Jung JE, Han SH, Cho HY. Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. Int J Mol Sci 2021 ;22:10122. [DOI:10.3390/ijms221810122]
9. Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal preeclampsia and neonatal outcomes. J Pregnancy 2011;2011:214365. [DOI:10.1155/2011/214365]
10. Liu X, Liu H, Gu N, Pei J, Lin X, Zhao W. Preeclampsia promotes autism in offspring via maternal inflammation and fetal NFκB signaling. Life Sci Alliance 2023;6:e202301957. [DOI:10.26508/lsa.202301957]
11. Johnson AC, Tremble SM, Cipolla MJ. Experimental Preeclampsia Causes Long-Lasting Hippocampal Vascular Dysfunction and Memory Impairment. Front Physiol 2022;13:889918. [DOI:10.3389/fphys.2022.889918]
12. Ray JG, Wanigaratne S, Park AL, Bartsch E, Dzakpasu S, Urquia ML. Preterm preeclampsia in relation to country of birth. J Perinatol 2016;36:718-22. [DOI:10.1038/jp.2016.73]
13. Stefanovic V, Andersson S, Vento M. Oxidative stress - Related spontaneous preterm delivery challenges in causality determination, prevention and novel strategies in reduction of the sequelae. Free Radic Biol Med 2019;142:52-60. [DOI:10.1016/j.freeradbiomed.2019.06.008]
14. Sebastiani G, Navarro-Tapia E, Almeida-Toledano L, Serra-Delgado M, Paltrinieri AL, García-Algar Ó, et al. Effects of Antioxidant Intake on Fetal Development and Maternal/Neonatal Health during Pregnancy. Antioxidants (Basel) 2022;11:648. [DOI:10.3390/antiox11040648]
15. Ruwizhi N, Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. Int J Mol Sci 2020;21:5712. [DOI:10.3390/ijms21165712]
16. Hemmati AA, Alboghobeish S, Ahangarpour A. Effects of cinnamic acid on memory deficits and brain oxidative stress in streptozotocin-induced diabetic mice. Korean J Physiol Pharmacol 2018;22:257-267. [DOI:10.4196/kjpp.2018.22.3.257]
17. Safarpour M, Edalatmanesh MA, Hosseini SE. The effect of cinnamic acid on fetal hippocampus in pregnant rats. Comp Clin Pathol 2020; 29: 945-954. [DOI:10.1007/s00580-020-03118-8]
18. Nakamura N, Ushida T, Onoda A, Ueda K, Miura R, Suzuki T, et al. Altered offspring neurodevelopment in an L-NAME-induced preeclampsia rat model. Front Pediatr 2023;11:1168173. [DOI:10.3389/fped.2023.1168173]
19. Abutalebi Ardakani Z, Edalatmanesh MA. The effect of coenzyme-Q10 on neuroinflammation and hippocampal cell damage in a model of monosodium glutamate induced excitotoxicity. Pars Journal of Medical Sciences 2021; 19: 45-53. [In Persian]
20. Kaveh R, Edalatmanesh MA. The neuroprotective effect of coenzyme Q10 N on Monosodium glutamate induced cognitive deficits and oxidative stress in the hippocampus of rats. Journal of Sabzevar University of Medical Sciences 2022; 29: 268-280.
21. Wang Y, Li B, Zhao Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Front Immunol 2022;13:883404. [DOI:10.3389/fimmu.2022.883404]
22. Michalczyk M, Celewicz A, Celewicz M, Woźniakowska-Gondek P, Rzepka R. The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediators Inflamm 2020;2020:3864941. [DOI:10.1155/2020/3864941]
23. Aggarwal R, Jain AK, Mittal P, Kohli M, Jawanjal P, Rath G. Association of pro- and anti-inflammatory cytokines in preeclampsia. J Clin Lab Anal 2019;33:e22834. [DOI:10.1002/jcla.22834]
24. Fragoso MBT, Ferreira RC, Tenório MCDS, Moura FA, de Araújo ORP, Bueno NB, et al. Biomarkers of Inflammation and Redox Imbalance in Umbilical Cord in Pregnancies with and without Preeclampsia and Consequent Perinatal Outcomes. Oxid Med Cell Longev 2021;2021:9970627. [DOI:10.1155/2021/9970627]
25. Taylor BD, Ness RB, Klebanoff MA, Tang G, Roberts JM, Hougaard DM, et al. The impact of female fetal sex on preeclampsia and the maternal immune milieu. Pregnancy Hypertens 2018;12:53-57. [DOI:10.1016/j.preghy.2018.02.009]
26. Taysi S, Tascan AS, Ugur MG, Demir M. Radicals, Oxidative/Nitrosative Stress and Preeclampsia. Mini Rev Med Chem 2019;19:178-193. [DOI:10.2174/1389557518666181015151350]
27. Sebastiani G, Navarro-Tapia E, Almeida-Toledano L, Serra-Delgado M, Paltrinieri AL, García-Algar Ó, et al. Effects of Antioxidant Intake on Fetal Development and Maternal/Neonatal Health during Pregnancy. Antioxidants (Basel) 2022;11:648. [DOI:10.3390/antiox11040648]
28. Liu X, Zhao W, Liu H, Kang Y, Ye C, Gu W, et al. Developmental and Functional Brain Impairment in Offspring from Preeclampsia-Like Rats. Mol Neurobiol 2016;53:1009-1019. [DOI:10.1007/s12035-014-9060-7]
29. Gozzi A, Zerbi V. Modeling Brain Dysconnectivity in Rodents. Biol Psychiatry 2023;93:419-429. [DOI:10.1016/j.biopsych.2022.09.008]
30. Hofsink N, Dijkstra DJ, Stojanovska V, Scherjon SA, Plösch T. Preeclampsia-induced alterations in brain and liver gene expression and DNA methylation patterns in fetal mice. J Dev Orig Health Dis 2023;14:146-151. [DOI:10.1017/S2040174422000344]
31. Huang B, Wang Y, Jiang Y, Lv H, Jiang T, Qiu Y, et al. Association of maternal hypertensive disorders in pregnancy with infant neurodevelopment. J Biomed Res 2023;37:479-491. [DOI:10.7555/JBR.37.20230074]
32. Johnson AC, Tremble SM, Cipolla MJ. Experimental Preeclampsia Causes Long-Lasting Hippocampal Vascular Dysfunction and Memory Impairment. Front Physiol 2022;13:889918. [DOI:10.3389/fphys.2022.889918]
33. Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022;78:101636. [DOI:10.1016/j.arr.2022.101636]
34. Ruwizhi N, Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. Int J Mol Sci 2020;21:5712. [DOI:10.3390/ijms21165712]
35. Gong P, Liu M, Hong G, Li Y, Xue P, Zheng M, et al. Curcumin improves LPS-induced preeclampsia-like phenotype in rat by inhibiting the TLR4 signaling pathway. Placenta 2016;41:45-52. [DOI:10.1016/j.placenta.2016.03.002]
36. El-Malkey NF, Aref M, Emam H, Khalil SS. Impact of Melatonin on Full-Term Fetal Brain Development and Transforming Growth Factor-β Level in a Rat Model of Preeclampsia. Reprod Sci. 2021;28:2278-2291. doi: 10.1007/s43032-021-00497-3. [DOI:10.1007/s43032-021-00497-3]
37. Zhong M, Peng J, Xiang L, Yang X, Wang X, Zhu Y. Epigallocatechin Gallate (EGCG) Improves Anti-Angiogenic State, Cell Viability, and Hypoxia-Induced Endothelial Dysfunction by Downregulating High Mobility Group Box 1 (HMGB1) in Preeclampsia. Med Sci Monit 2020;26:e926924. [DOI:10.12659/MSM.926924]
38. Pozdnyakov DI. 4-Hydroxy-3,5-di-tret-butyl cinnamic acid restores the activity of the hippocampal mitochondria in rats under permanent focal cerebral ischemia. Iran J Basic Med Sci 2021;24:1590-1601. [DOI:10.22541/au.161058198.82817521/v1]
39. Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 2017;40:1444-1456. [DOI:10.3892/ijmm.2017.3127]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jaidari T, Shariati M, Edalatmanesh M A. Protective and anti-inflammatory effect of trans-cinnamic acid on hippocampus cell damage and fetal forebrain neuroinflammation in preeclampsia model rats. MEDICAL SCIENCES 2024; 34 (4) :365-374
URL: http://tmuj.iautmu.ac.ir/article-1-2195-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 4 (winter 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4679