[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 35, Issue 1 (spring 2025) ::
MEDICAL SCIENCES 2025, 35(1): 35-43 Back to browse issues page
Development and validation of a HPLC-UV method of analysis for sulfasalazine in human plasma
Amir Beheshti Maal1 , Seyed Mohammad Alavi1 , Mohsen Amini2 , Hoda Jahandar3
1- PharmD student Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University (IAUPS), Tehran, Iran
2- Full Professor, Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran , moamini@tums.ac.ir
3- Assistant Professor, Department of pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University (IAUPS), Tehran, Iran
Abstract:   (191 Views)

Background: In this study, a rapid, simple, and advanced reverse phase high-performance liquid chromatography (RP-HPLC) method was developed for the quantification of sulfasalazine in human plasma.

Materials and methods: Sulfasalazine was extracted from plasma matrices using a simple protein precipitation method by acetonitrile. Chromatographic conditions were optimized (mobile phase compositon, flow rate, injection volume and temperature of the oven). The method was validated in protein precipitated human plasma for linearity, selectivity, accuracy, precision, limit of detection, limit of quantification.

Results: The chromatographic separation was conducted on C18 brisa LC2 column (250 mm × 4.6 mm, 5μ) using isocratic elusion with mobile phase consisting of the mixture of acetonitrile: 10mM Ammonium acetate pH adjusted to 4.6 (30:70 v/v) with a flow rate of 1.0 ml/min at ambient temperature. Detection was carried out by UV detector at 361 nm. Calibration curves made in the human plasma were linear in the range of 3.125-50 μg/ml with the value of r2 > 0.9999. The LOD and LOQ was 0.5 and 2.5 µg/ml, repectively.

Conclusion: The developed and validated HPLC-UV method is suitable for accurately determining sulfasalazine levels in pharmacokinetic studies of new formulations.

Keywords: Sulfasalazine, RP-HPLC, Human plasma, Method development, Validation
Full-Text [PDF 856 kb]   (57 Downloads)    
Semi-pilot: Experimental | Subject: Pharmacology
Received: 2024/03/6 | Accepted: 2024/05/28 | Published: 2025/03/30
References
1. Swetha V, Lavanya S, Sabeena G, Pushpalaksmi E, Jenson S J, Annadurai G. Synthesis and characterization of silver nanoparticles from Ashyranthus aspera extract for antimicrobial activity studies. J Appl Sci Environ Manag 2022; 24:1161-1167. [DOI:10.4314/jasem.v24i7.6]
3. Waghmar SS, Deshmukh AM, Sadowski Z. Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 2014;2:138-46. [DOI:10.5897/AJMR10.143]
5. Zhou Y X, Xin HI, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleracea L. a review of phytochemistry and pharmacological effects. Biomed Res Int 2015:2015:925631. [DOI:10.1155/2015/925631]
7. Khaksar M, Vasileiadis S, Sekine R, Brunetti G, Scheckel KG, Vasilev K, et al. Chemical characterisation, antibacterial activity, and (nano)silver transformation of commercial personal care products exposed to household greywater. Environ Sci Nano 2019;6:3027-3028. [DOI:10.1039/C9EN00738E]
9. Hashemi B, Taghiloo S, Allahmoradi E, Karami M, Rahdar HA. Assessment of antibacterial effect of hydro alcoholic extract of Portulaca oleracea on the human pathogen bacteria. Journal of Sabzevar University of Medical Sciences 2018; 25: 303-8. [In Persian]
10. Lateef A, Ojo SA, Elegbede JA. The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol Rev 2016; 601-622. [DOI:10.1515/ntrev-2016-0049]
12. Dousti B, Nabipour F, Hajiamraci A. Green Synthesis of Silver Nanoparticle Using Aqueous Extract of Fumaria Parviflora and Study of its Antibacterial and Antioxidant Properties. Razi Journal of Medical Sciences 2019; 26: 105-17. [In Persian]
13. Rasouli H, Popović-Djordjević J, Sayyed RZ, Zarayneh S, Jafari M, Fazeli-Nasab B. Nanoparticles: a new threat to crop plants and soil rhizobia? In: Hayat SS, Pichtel J, Faizan M, Fariduddin Q, Eds. ustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development. Berlin: Springer International Publishing; 2020. P. 201-214. [DOI:10.1007/978-3-030-33996-8_11]
15. Kakaei K, Ghadimi G. Synthesis of silver nanoparticles based on reduced graphene oxide anelectrocatalyst for cuthod side of fuel cells. Applied Chemistry Today 2019; 14: 51-62. [In Persian]
16. Amooaghaie R, SaerI M R, Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from _Nigella sativa_ leaf extract in comparison with chemical silver nanoparticles. cotoxicol Environ Saf 2015;120:400-8. [DOI:10.1016/j.ecoenv.2015.06.025]
18. Ghaderi RS, Kazemi M, Soleimanpour S. Nanoparticles are More Successful Competitor than Antibiotics in Treating Bacterial Infections. A Review of the Literature. Iran J Med Microbiol 2021:15:18-45. [In Persian] ‎ [DOI:10.30699/ijmm.15.1.18]
20. Ghandehari S, Homayounitabrizi M , Ardalan P. Antioxidant And Cytotoxic Properties of Green Synthesized Silver Nanoparticles from Rubia tinctorum . J Ilam Uni Med Sci 2018; 26:57-67. [In Persian] [DOI:10.29252/sjimu.26.2.57]
22. Shali R, Neamati A, Ardalan P. Investigating the Cytotoxic Effect and Antioxidant Properties of Green Synthesized Silver Nanoparticles from the Root of Persicaria Bistorta on Human Liver Cancer Cell Line (Hep G2) J Ilam Uni Med Sci 2018; 26: 133-142. [DOI:10.29252/sjimu.26.6.133]
24. Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry 2012;2:141-47. [DOI:10.4236/gsc.2012.24020]
26. Anuj SA, Gajera HP, Hirpara DG, Golakiya BA. Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in gram-negative bacteria. Life Sci 2019;230:178-87. [DOI:10.1016/j.lfs.2019.05.072]
28. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater 2004;3:482-8. [DOI:10.1038/nmat1152]
30. Allafchian AR, Jalali SAH, Aghaei F, Farhang HR. Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) Curtis extract and evaluation of its antibacterial activity. IET Nanobiotechnol 2018;12:574-78. [DOI:10.1049/iet-nbt.2017.0265]
32. Vélez E, Campillo G, Morales G, Hincapié C, Osorio J, Arnache O. Silver Nanoparticles Obtained by Aqueous or Ethanolic Aloevera Extracts : An Assessment of the Antibacterial Activity and Mercury Removal Capability . J Nanomater 2018:1-7. [DOI:10.1155/2018/7215210]
34. Miri A, Mahdinejad N, Ebrahimy O, Khatami M, Sarani M. Zinc oxide nanoparticles: Biosynthesis, characterization, antifungal and cytotoxic activity. Mater Sci Eng C Mater Biol Appl 2019;104:109981. [DOI:10.1016/j.msec.2019.109981]
36. Kumar Sur U, Ankamwar B, Karmakar S, Halder A, Das P. Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Materials Today: Proceedings 2018;5: 2321-29. [DOI:10.1016/j.matpr.2017.09.236]
38. Karamian R J, Kamalnejade.Green synthesis of silver nanoparticles using aqueous seed extract of Cuminum cyminum L. and evaluation of their biological activities. J Ilam Uni Med Sci 2019; 26:128-141. [In Persian] [DOI:10.29252/sjimu.26.5.128]
40. Prathap M, Alagesan A, Ranjitha Kumari BD. Anti - bacterial activities of silver nanoparticles synthesized from plant leaf extract of Abutilon indicum (L.) Sweet. J Nanostruct Chem 2014; 4:106. [DOI:10.1007/s40097-014-0106-1]
42. Kaur A, Preet S, Kumar V, Kumar R, Kumar R. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids Surf B Biointerfaces 2019;176:62-69. [DOI:10.1016/j.colsurfb.2018.12.043]
44. Moshahary S, Mishra P. Synthesis of silver nanoparticles (AgNPs) using culinary banana peel extract for the detection of melamine in milk. J Food Sci Technol 2021;58:797-804. [DOI:10.1007/s13197-020-04791-x]
46. 25 Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 2019. [DOI:10.1007/s40097-018-0291-4]
48. Azizinshermeh O, Valizadeh J, Noroozifar M, Ghasemi A, Valizadeh M. Optimization, characterization and antimicrobial activity of gold nanoparticles biosynthesized using aqueous extract of Sambucus ebulus. L. Eco-phytochemical Journal of Medicinal Plants 2016;4:1-18. [In Persian]
49. Waghmar SS, Deshmukh AM, Sadowski Z. Biosynthesis, optimization, purification and characterization of gold nanoparticles. African J Microbiol Res 2014; 8: 138-46. [DOI:10.5897/AJMR10.143]
51. Dwivedi AG, Gopol K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extracts. Coll Suf Phys Eng Asp 2010; 360:27-33. [DOI:10.1016/j.colsurfa.2010.07.020]
53. Miri A, Sarani M, Bazaz MR, Darroudi M. Plantmediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 287-291. [DOI:10.1016/j.saa.2015.01.024]
55. Azizian Shermeh O, Valizadeh M, Valizadeh J, Taherizadeh M, Beigomi M. Phytochemical investigation and phytosynthesis of silver nanoparticles using aqueous extract of Capparis spinosa L. Modares J Biotech 2017; 8: 80-90. [In Persian]
56. Dwivedi AG, Gopol K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extracts. Coll Suf Phys Eng Asp 2010; 360:27-33. [DOI:10.1016/j.colsurfa.2010.07.020]
58. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16:23-46. [DOI:10.1088/0957-4484/16/10/059]
60. Brian MO, hemachitra P, Deepa R, Selvi VS. Synthesis of silver nanoparticles and its antibacterial activity from Moringa Oleifera, murraya Koingii and Ocimum sanctum against E.Coli and S.aureus. Der Pharmacia Lettre 2016; 8: 150-60.
61. Arokiyaraj S, Vincent S, Saravanan M, Green. Synthesis of silver nanoparticles using Rheum Palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol 2016; 45: 372-379. [DOI:10.3109/21691401.2016.1160403]
63. Rodinol S, Butu A, Petrache P, Butu M, Dinupirvu C, Cornea CA. Evaluation of the antimicrobial and antioxidant activity of Sambucus ebulus extract. Farmacia 2015; 5:751-4.
64. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gramnegative bacteria. Nanomedicine 2012; 8: 37-45. [DOI:10.1016/j.nano.2011.05.007]
66. Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 2011;166:119-35. [DOI:10.1016/j.cis.2011.05.008]
68. Abdelaziz MS, Elnekeety AA, Abdelwahhab MA. Antioxidant and antibacterial activity of Silver nanoparticles biosynthesizes using chenopodium murale leaf extract. J Saudi Chem Soc 2014;18:356-63. [DOI:10.1016/j.jscs.2013.09.011]
70. Sudha A, Jeyakanthan J, Srinivasan P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial and evaluation of their antioxidant, Resource-Efficient Technologies 2017;3: 506-515. [DOI:10.1016/j.reffit.2017.07.002]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beheshti Maal A, Alavi S M, Amini M, Jahandar H. Development and validation of a HPLC-UV method of analysis for sulfasalazine in human plasma. MEDICAL SCIENCES 2025; 35 (1) :35-43
URL: http://tmuj.iautmu.ac.ir/article-1-2218-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 35, Issue 1 (spring 2025) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4700