1- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran 2- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran - Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran 3- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran 4- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , aaskari60@yahoo.com
Abstract: (287 Views)
Bone tissue regeneration is a complex process primarily regulated through cell-cell interactions, cell-matrix communications, and paracrine signaling. Exosomes, extracellular vesicles of endocytic origin, play a crucial role in bone regeneration due to their unique cargo, which includes proteins and microRNAs. These vesicles actively regulate key cellular processes such as differentiation, migration, and apoptosis of bone cells. This review explores the role of exosomes in bone homeostasis, intercellular communication, and their therapeutic potential in enhancing bone regeneration
1. Wu M, Chen G, Li Y-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016;4:1-21. [DOI:10.1038/boneres.2016.9]
3. Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 2015;65:20-31. [DOI:10.1016/j.biocel.2015.05.008]
4. Nishiyama K, Sugimoto T, Kaji H, Kanatani M, Kobayashi T, Chihara K. Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation. Endocrinology 1996;137):35-41. [DOI:10.1210/endo.137.1.8536635]
5. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 2018;6:16. [DOI:10.1038/s41413-018-0019-6]
6. Tao SC, Guo SC. Extracellular vesicles in bone: "dogrobbers" in the "eternal battle field". Cell Commun Signal 2019;17:6. [DOI:10.1186/s12964-019-0319-5]
7. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750. [DOI:10.1080/20013078.2018.1535750]
9. Al-Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bioadv 2020;2:668-79. [DOI:10.1096/fba.2020-00058]
10. Park YE, Musson DS, Naot D, Cornish J. Cell-cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017;34:21-35. [DOI:10.1016/j.coph.2017.04.001]
11. Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr Osteoporos Rep 2017;15:318-25. [DOI:10.1007/s11914-017-0373-0]
12. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci 2011;124:991-8. [DOI:10.1242/jcs.063032]
13. Bellido T, Plotkin LI, Bruzzaniti A. Bone cells. In: Burr DB, Allen MR. Basic and Applied Bone Biology. Cambridge, Massachusetts, United States: Academic Press; 2019. p. 37-55. [DOI:10.1016/B978-0-12-813259-3.00003-8]
15. Väänänen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci 2000;113:377-81. [DOI:10.1242/jcs.113.3.377]
16. Mori G, D'Amelio P, Faccio R, Brunetti G. The interplay between the bone and the immune system. J Immunol Res 2013;2013:720504. [DOI:10.1155/2013/720504]
17. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci 2019;9:1-18. [DOI:10.1186/s13578-019-0282-2]
18. Jung MK, Mun JY. Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp 2018:56482. [DOI:10.3791/56482-v]
19. Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, et al. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024:155618. [DOI:10.1016/j.prp.2024.155618]
20. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367:eaau6977. [DOI:10.1126/science.aau6977]
21. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018;75:193-208. [DOI:10.1007/s00018-017-2595-9]
22. Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int J Mol Sci 2023;24:1337. [DOI:10.3390/ijms24021337]
23. Peng X, Yang L, Ma Y, Li Y, Li H. Focus on the morphogenesis, fate and the role in tumor progression of multivesicular bodies. Cell Commun Signal 2020;18:1-15. [DOI:10.1186/s12964-020-00619-5]
24. Xu M, Ji J, Jin D, Wu Y, Wu T, Lin R, et al. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes Dis 2023;10:1894-907. [DOI:10.1016/j.gendis.2022.03.021]
25. Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone‐derived exosomes and exosomal micro RNA s in regulating bone remodelling. J Cell Mol Med 2017;21:1033-41. [DOI:10.1111/jcmm.13039]
26. Jin Y, Xu M, Zhu H, Dong C, Ji J, Liu Y, et al. Therapeutic effects of bone marrow mesenchymal stem cells‐derived exosomes on osteoarthritis. J Cell Mol Med 2021;25:9281-94. [DOI:10.1111/jcmm.16860]
27. Tan S, Wong J, Sim S, Tjio C, Wong K, Chew J, et al. Mesenchymal stem cell exosomes in bone regenerative strategies-a systematic review of preclinical studies. Mater Today Bio 2020;7:100067. [DOI:10.1016/j.mtbio.2020.100067]
28. Vig S, Fernandes MH. Bone cell exosomes and emerging strategies in bone engineering. Biomedicines 2022;10:767. [DOI:10.3390/biomedicines10040767]
29. Gao M, Gao W, Papadimitriou J, Zhang C, Gao J, Zheng M. Exosomes-the enigmatic regulators of bone homeostasis. Bone Res 2018;6:36. [DOI:10.1038/s41413-018-0039-2]
30. Wang W, Qiao S-C, Wu X-B, Sun B, Yang J-G, Li X, et al. Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death Dis 2021;12:628. [DOI:10.1038/s41419-021-03915-1]
31. Masaoutis C, Theocharis S. The role of exosomes in bone remodeling: implications for bone physiology and disease. Dis Markers 2019;2019:9417914. [DOI:10.1155/2019/9417914]
32. Huynh N, VonMoss L, Smith D, Rahman I, Felemban M, Zuo J, et al. Characterization of regulatory extracellular vesicles from osteoclasts. J Dent Res 2016;95:673-9. [DOI:10.1177/0022034516633189]
33. Chen C, Zheng R, Cao X, Zhang G. Biological characteristics of osteoclast exosomes and their role in the osteogenic differentiation of somatic cells prior to osteogenesis. J Biol Regul Homeost Agents 2018;32:815-23.
34. Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett 2016;590:185-92. [DOI:10.1002/1873-3468.12024]
35. Narayanan K, Kumar S, Padmanabhan P, Gulyas B, Wan AC, Rajendran VM. Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation. Biomaterials 2018;182:312-22. [DOI:10.1016/j.biomaterials.2018.08.027]
36. Eichholz KF, Woods I, Riffault M, Johnson GP, Corrigan M, Lowry MC, et al. Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem cells Transl Med 2020;9:1431-47. [DOI:10.1002/sctm.19-0405]
37. Morrell AE, Brown GN, Robinson ST, Sattler RL, Baik AD, Zhen G, et al. Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res 2018;6:6. [DOI:10.1038/s41413-018-0007-x]
38. Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther 2019;10:1-13. [DOI:10.1186/s13287-018-1115-7]
39. Qin Y, Zhang C. Endothelial progenitor cell-derived extracellular vesicle-meditated cell-to-cell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells. Mol Med Rep 2017;16:7018-24. [DOI:10.3892/mmr.2017.7403]
40. Wang Z, Ding L, Zheng X-L, Wang H-X, Yan H-M. DC-derived exosomes induce osteogenic differentiation of mesenchymal stem cells. Zhongguo shi yan xue ye xue za zhi. 2014;22:600-4.
41. Cao Z, Wu Y, Yu L, Zou L, Yang L, Lin S, et al. Exosomal miR-335 derived from mature dendritic cells enhanced mesenchymal stem cell-mediated bone regeneration of bone defects in athymic rats. Mol Med 2021;27:1-13. [DOI:10.1186/s10020-021-00268-5]
42. Elashiry M, Elashiry MM, Elsayed R, Rajendran M, Auersvald C, Zeitoun R, et al. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J Extracell Vesicles 2020;9:1795362. [DOI:10.1080/20013078.2020.1795362]
43. Xia Y, He X-T, Xu X-Y, Tian B-M, An Y, Chen F-M. Exosomes derived from M0, M1 and M2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells. PeerJ 2020;8:e8970. [DOI:10.7717/peerj.8970]
44. Jiang T, Wang Z, Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/Smad signaling pathway. Stem cell Res Ther 2020;11:1-10. [DOI:10.1186/s13287-020-01723-6]
45. Wei F, Li Z, Crawford R, Xiao Y, Zhou Y. Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis. J Tissue Eng Regen Med 2019;13:1978-91. [DOI:10.1002/term.2947]
46. Ahmadi M, Rezaie J. Ageing and mesenchymal stem cells derived exosomes: molecular insight and challenges. Cell Biochem Funct 2021;39:60-6. [DOI:10.1002/cbf.3602]
47. Karlsson T, Lundholm M, Widmark A, Persson E. Tumor cell-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PloS One 2016;11:e0166284. [DOI:10.1371/journal.pone.0166284]
48. Wang Y, Lin Q, Song C, Ma R, Li X. Circ_0007841 promotes the progression of multiple myeloma through targeting miR-338-3p/BRD4 signaling cascade. Cancer Cell Int 2020;20:1-13. [DOI:10.1186/s12935-020-01475-6]
49. Manochantr S, U‐pratya Y, Kheolamai P, Rojphisan S, Chayosumrit M, Tantrawatpan C, et al. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord. Intern Med J 2013;43:430-9. [DOI:10.1111/imj.12044]
50. Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, et al. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024;15:407. [DOI:10.1186/s13287-024-04024-4]
51. Hu Y, Zhang Y, Ni C-Y, Chen C-Y, Rao S-S, Yin H, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics 2020;10:2293. [DOI:10.7150/thno.39238]
52. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012;40: 363-408. [DOI:10.1615/CritRevBiomedEng.v40.i5.10]
53. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater 2015;4:1268-85. [DOI:10.1002/adhm.201400760]
54. Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol 2019;46:92-102. [DOI:10.1111/jcpe.13058]
55. Shao Z, Lyu C, Teng L, Xie X, Sun J, Zou D, et al. An injectable fibrin scaffold rich in growth factors for skin repair. BioMed Res Int 2021;2021:8094932. [DOI:10.1155/2021/8094932]
56. Qayoom I, Teotia AK, Kumar A. Nanohydroxyapatite based ceramic carrier promotes bone formation in a femoral neck canal defect in osteoporotic rats. Biomacromolecules 2019;21:328-37. [DOI:10.1021/acs.biomac.9b01327]
57. Holkar K, Kale V, Ingavle G. Hydrogel-assisted 3D model to investigate the osteoinductive potential of MC3T3-derived extracellular vesicles. ACS Biomater Sci Eng 2021;7:2687-700. [DOI:10.1021/acsbiomaterials.1c00386]
58. Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact Mater 2021;6:823-35. [DOI:10.1016/j.bioactmat.2020.09.011]
59. Yang J-X, Xie P, Li Y-S, Wen T, Yang X-C. Osteoclast-derived miR-23a-5p-containing exosomes inhibit osteogenic differentiation by regulating Runx2. Cell Signal 2020;70:109504. [DOI:10.1016/j.cellsig.2019.109504]
60. Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, et al. Non-:union: bone fractures. Nat Rev Dis Primers 2021;7:57. [DOI:10.1038/s41572-021-00289-8]
61. Wang Y, Chen W, Zhao L, Li Y, Liu Z, Gao H, et al. Obesity regulates miR‐467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC‐derived exosome LncRNA H19. J Cell Mol Med 2021;25:1712-24. [DOI:10.1111/jcmm.16273]
62. Zhi F, Ding Y, Wang R, Yang Y, Luo K, Hua F. Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and enhances adipogenic versus osteogenic differentiation in human bone marrow mesenchymal stem cells by sponging miR-431-5p. Stem Cell Res Ther 2021;12:1-15. [DOI:10.1186/s13287-021-02214-y]
63. Li Y, Wang X, Pan C, Yuan H, Li X, Chen Z, et al. Myoblast-derived exosomal Prrx2 attenuates osteoporosis via transcriptional regulation of lncRNA-MIR22HG to activate Hippo pathway. Mol Med 2023;29:54. [DOI:10.1186/s10020-023-00649-y]
64. Schlickewei CW, Kleinertz H, Thiesen DM, Mader K, Priemel M, Frosch K-H, et al. Current and future concepts for the treatment of impaired fracture healing. Int J Mol Sci 2019;20:5805. [DOI:10.3390/ijms20225805]
65. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 2015;11:45-54. [DOI:10.1038/nrrheum.2014.164]
66. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012;8:133-43. [DOI:10.1038/nrrheum.2012.1]
67. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med 2016;5:1620-30. [DOI:10.5966/sctm.2015-0285]
68. Narayanan R, Huang C-C, Ravindran S. Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int 2016;2016:3808674. [DOI:10.1155/2016/3808674]
69. Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 2020;103:196-212. [DOI:10.1016/j.actbio.2019.12.020]
70. Xu T, Luo Y, Wang J, Zhang N, Gu C, Li L, et al. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5. J Nanobiotechnol 2020;18:1-18. [DOI:10.1186/s12951-020-00601-w]
71. Zhu F, Wang T, Wang G, Yan C, He B, Qiao B. The exosome‐mediated bone regeneration: an advanced horizon toward the isolation, engineering, carrying modalities, and mechanisms. Adv Healthc Mater 2024;13:2400293. [DOI:10.1002/adhm.202400293]
72. Qin Y, Sun R, Wu C, Wang L, Zhang C. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int J Mol Sci 2016;17 [DOI:10.3390/ijms17050712]
Nakhaei Amroodi M, Tabrizian P, Bahaeddini M, Emami Meybodi T, Mokhtari K, Askari A. The role of exosomes in bone tissue regeneration: signaling mechanisms and therapeutic potential – a mini review. MEDICAL SCIENCES 2025; 35 (4) :396-405 URL: http://tmuj.iautmu.ac.ir/article-1-2378-en.html