[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 31، شماره 1 - ( بهار1400 1399 ) ::
جلد 31 شماره 1 صفحات 39-48 برگشت به فهرست نسخه ها
نقش گیرنده های دوپامین و راه کارهای نوین درمانی در سرطان ریه از نوع سلولی غیر کوچک (NSCLC)
دکتر عباس جمشیدی اول1، پروفسور قاسم آهنگری 2
1- دکتری تخصصی، گروه زیست شناسی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران
2- پژوهشگاه ملی مهندسی زنتیک و زیست فناوری ، ghah@nigeb.ac.ir
چکیده:   (163 مشاهده)
سرطان ریه، سرطانی بسیار تهاجمی و کشنده­ترین سرطان، هم در مردان و هم در زنان، است. سرطان ریه به دو دسته سرطان ریه سلول­های کوچک (SCLC) و سرطان ریه غیرکوچک (NSCLC) تقسیم می­شود.  NSCLC به 3 زیر گروه تقسیم می­شود: آدنوکارسینوم (AC)، کارسینوم سلول سنگفرشی (SqCC) و کارسینوم سلول­های بزرگ (LCC). دوپامین در مغز، در کنترل حرکات، شناخت، احساسات، حافظه و مکانیسم پاداش درگیر است. گیرنده­های دوپامین به دو زیرخانواده D1 مانند، شامل D1 و D5، و D2مانند، شامل گیرنده­های D2، D3 و D4، تقسیم می­شوند. بین بیان ژن­های خانواده D2 گیرنده­های دوپامین و ابتلا به NSCLC ارتباط وجود دارد. miRNAها مولکول­های حفاظت شده 18 تا 22 نوکلئوتیدی هستند. miR4301 در اینترون اول ژن گیرنده دوپامین D2 قرار دارد. انتقال miR4301 در رده­های سلولی سرطانی ریه A549 و QU-DB تکثیر سلولی را کاهش و آپوپتوز را افزایش می­دهد؛ بنابراین استفاده ازmiRNAها به تنهایی یا در ترکیب با استراتژی­های درمانی استاندارد می­تواند موفقیت در درمان سرطان را بهبود بخشد. در این مقاله مروری، ما نقش گیرنده­های دوپامین و راه­کارهای نوین درمانی در سرطان ریه از نوع سلولی غیرکوچک (NSCLC) را بررسی کردیم.
واژه‌های کلیدی: سرطان ریه، گیرنده دوپامین، miRNA، آپوپتوز
متن کامل [PDF 451 kb]   (73 دریافت)    
نيمه آزمايشي : مروري | موضوع مقاله: زيست شناسي مولكولي
دریافت: 1399/2/20 | پذیرش: 1399/4/31 | انتشار: 1400/1/4
فهرست منابع
1. Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. Biochim Biophys Acta 2015;1856:189-210. [DOI:10.1016/j.bbcan.2015.08.002]
2. Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 2013;82:179-89. [DOI:10.1016/j.lungcan.2013.07.025]
3. Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci Signal 2009; 2:2. [DOI:10.1126/scisignal.268re2]
4. Rubí B, Maechler P. Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology 2010;151:5570-81. [DOI:10.1210/en.2010-0745]
5. Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. Aging Dis 2015; 6:349. [DOI:10.14336/AD.2015.0330]
6. Lane JR, Chubukov P, Liu W, Canals M, Cherezov V, Abagyan R, et al. Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol Pharmacol 2013; 84:794-807. [DOI:10.1124/mol.113.088054]
7. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine Receptors: From Structure to Function. Physiol Rev 1998;78:189-225. [DOI:10.1152/physrev.1998.78.1.189]
8. Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000; 24:125-132. [DOI:10.1016/S0149-7634(99)00063-9]
9. Dalmay T. MicroRNAs and cancer. J Intern Med 2008;263:366-375. [DOI:10.1111/j.1365-2796.2008.01926.x]
10. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009;11:228-234. [DOI:10.1038/ncb0309-228]
11. Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. MicroRNA Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms behind Variable Drug Disposition and Strategy to Develop More Effective Therapy. Drug Metab Dispos 2016;44:308-19. [DOI:10.1124/dmd.115.067470]
12. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007;8:23-36. [DOI:10.1038/nrm2085]
13. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, etal. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433:769-773. [DOI:10.1038/nature03315]
14. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007; 8:214. [DOI:10.1186/gb-2007-8-10-r214]
15. Zhao K, Cheng J, Chen B, Liu Q, Xu D, Zhang Y. Circulating microRNA-34 family low expression correlates with poor prognosis in patients with non-small cell lung cancer. J Thorac Dis 2017;9:3735-3746. [DOI:10.21037/jtd.2017.09.01]
16. Li JC, Zheng JQ. Effect of microRNA-145 on proliferation and apoptosis of human non-small cell lung cancer A549 cells by regulating mTOR signaling pathway. J Cell Biochem 2017;21. [DOI:10.1002/jcb.26629]
17. Hou L, Luo P, Ma Y, Jia C, Yu F, Lv Z, et al. MicroRNA-125a-3p downregulation correlates with tumorigenesis and poor prognosis in patients with non-small cell lung cancer. Oncol Lett 2017;14:4441-4448. [DOI:10.3892/ol.2017.6809]
18. Kang M, Shi J, Peng N, He S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. Onco Targets Ther 2017; 10: 5667-5675. [DOI:10.2147/OTT.S143084]
19. Wang L., Qu J., Zhou L., Liao F., Wang J. MicroRNA-373 Inhibits Cell Proliferation and Invasion via Targeting BRF2 in Human Non-small Cell Lung Cancer A549 Cell Line. Cancer Res Treat 2017; 12. [DOI:10.4143/crt.2017.302]
20. Gao X, Li S, Li W, Wang G, Zhao W, Han J. MicroRNA-539 suppresses tumor cell growth by targeting the WNT8B gene in non-small cell lung cancer. J Cell Biochem 2017; 21.
21. Petrovic N., Ergun S. miRNAs as Potential Treatment Targets and Treatment Options in Cancer. Mol Diagn Ther 2018; 15. [DOI:10.1007/s40291-017-0314-8]
22. Goff LA, Davila J, Swerdel MR, Moore JC, Cohen RI, Wu H, et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PloS One 2009; 4:7192. [DOI:10.1371/journal.pone.0007192]
23. Bhatnagar P, Barron-Casella E, Bean CJ, Milton JN, Baldwin CT, Steinberg MH, et al. Genome-wide meta-analysis of systolic blood pressure in children with sickle cell disease. PLoS One 2013;8:74193. [DOI:10.1371/journal.pone.0074193]
24. Shi S, Leites C, He D, Schwartz D, Moy W, Shi J, Duan J. MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. J Biol Chem 2014;289:13434-44. [DOI:10.1074/jbc.M113.535203]
25. Sibley DR, Monsma FJ. Molecular biology of dopamine receptors. Trends Pharmacol Sci 1992;13:61-69. [DOI:10.1016/0165-6147(92)90025-2]
26. Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification 144 of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012;149:1284-1297. [DOI:10.1016/j.cell.2012.03.049]
27. Ostadali MR, Ahangari G, Eslami MB, Razavi A, Zarrindast MR, Ahmadkhaniha HR, et al. The Detection of Dopamine Gene Receptors (DRD1-DRD5) Expression on Human Peripheral Blood Lymphocytes by Real Time PCR. Iran J Allergy Asthm Immun 2004;3: 4.
28. Jandaghi P, Najafabadi HS, Bauer AS, Papadakis AI, Fassan M, Hall A, et al. Expression of DRD2 Is Increased in Human Pancreatic Ductal Adenocarcinoma and Inhibitors Slow Tumor Growth in Mice. Gastroenterology 2016;151:1218-1231. [DOI:10.1053/j.gastro.2016.08.040]
29. Huang H, Wu K, Ma J, Du Y, Cao C, Nie Y. Dopamine D2 receptor suppresses gastric cancer cell invasion and migration via inhibition of EGFR/AKT/MMP-13 pathway. Int Immunopharmacol 2016; 39:113-120. [DOI:10.1016/j.intimp.2016.07.002]
30. Borcherding DC, Tong W, Hugo ER, Barnard DF, Fox S, LaSance K, et al. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 2016;35:3103-13. [DOI:10.1038/onc.2015.369]
31. Liu XF, Long HJ, Miao XY, Liu GL, Yao HL. Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor. Oncol Rep 2017;38:53-62. [DOI:10.3892/or.2017.5676]
32. Lee SI, Roney MSI, Park JH, Baek JY, Park J, Kim SK, et al. Dopamine receptor antagonists induce differentiation of PC-3 human prostate cancer cell-derived cancer stem cell-like cells. Prostate 2019;79:720-731. [DOI:10.1002/pros.23779]
33. Bakhtou H, Olfatbakhsh A, Deezagi A, Ahangari G. The Expression of Dopamine Receptors Gene and their Potential Role in Targeting Breast Cancer Cells with Selective Agonist and Antagonist Drugs. Could it be the Novel Insight to Therapy? Curr Drug Discov Technol 2019;16:184-197. [DOI:10.2174/1570163815666180130101421]
34. Akbarian F, Abolhasani M, Dadkhah F, Asadi F, Ahangari G. Novel Insight into Differential Gene Expression and Clinical Significance of Dopamine Receptors, COMT, and IL6 in BPH and Prostate Cancer. Curr Mol Med 2019;19:605-619. [DOI:10.2174/1566524019666190709180146]
35. Pornour M, Ahangari G, Hejazi SH, Ahmadkhaniha HR, Akbari ME. Dopamine receptor gene (DRD1-DRD5) expression changes as stress factors associated with breast cancer. Asian Pac J Cancer Prev 2014; 15:10339-43. [DOI:10.7314/APJCP.2014.15.23.10339]
36. Akbari ME, Kashani FL, Ahangari G, Pornour M, Hejazi H, Nooshinfar E, et al. The effects of spiritual intervention and changes in dopamine receptor gene expression in breast cancer patients. Breast Cancer 2016;23:901. [DOI:10.1007/s12282-015-0663-2]
37. Pornour M, Ahangari G, Hejazi SH, Deezagi A. New perspective therapy of breast cancer based on selective dopamine receptor D2 agonist and antagonist effects on MCF-7 cell line. Recent Pat Anticancer Drug Discov 2015;10:214-23. [DOI:10.2174/1574892810666150416111831]
38. Gholipour N, Ohradanova-Repic A, Ahangari G. A novel report of MiR-4301 induces cell apoptosis by negatively regulating DRD2 expression in human breast cancer cells. J Cell Biochem 2018;119:6408-6417. [DOI:10.1002/jcb.26577]
39. Campa D, Zienolddiny S, Lind H, Ryberg D, Skaug V, Canzian F, et al. Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer 2007;56:17-23. [DOI:10.1016/j.lungcan.2006.11.007]
40. Sheikhpour M, Ahangari G, Sadeghizadeh M, Khosravi A, Derakhshani Deilami G. Significant Changes in D2-like Dopamine Gene Receptors Expression Associated with Non- Small -Cell Lung Cancer: Could it be of Potential Use in the Design of Future Therapeutic Strategies? Curr Canc Ther Rev 2012; 8: 4. [DOI:10.2174/157339412804143096]
41. Avval AJ, Majd A, Gholipour N, Noghabi KA, Ohradanova-Repic A, Ahangari G. An Inventive Report of Inducing Apoptosis in Non-Small Cell Lung Cancer (NSCLC) Cell Lines by Transfection of MiR-4301. Anticancer Agents Med Chem 2019;19:1609-1617. [DOI:10.2174/1871520619666190416114145]
42. Wu XY, Zhang CX, Deng LC, Xiao J, Yuan X, Zhang B, et al. Overexpressed D2 Dopamine Receptor Inhibits Non-Small Cell Lung Cancer Progression through Inhibiting NF-κB Signaling Pathway. Cell Physiol Biochem 2018;48:2258-2272. [DOI:10.1159/000492644]
43. Sheikhpour M, Ahangari G, Sadeghizadeh M, Deezagi A. A novel report of apoptosis in human lung carcinoma cells using selective agonist of D2-like dopamine receptors: a new approach for the treatment of human non-small cell lung cancer. Int J Immunopathol Pharmacol 2013; 26: 393-402. [DOI:10.1177/039463201302600212]
44. Oxnard GR, Arcila ME, Chmielecki J, Ladanyi M, Miller VA, Pao W. New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer. Clin Cancer Res 2011; 17:5530-7. [DOI:10.1158/1078-0432.CCR-10-2571]
45. Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer. Cell Physiol Biochem 2017;42:1431-1446. [DOI:10.1159/000479207]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamshidi Avval A, Ahangari G. A review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC). MEDICAL SCIENCES. 2021; 31 (1) :39-48
URL: http://tmuj.iautmu.ac.ir/article-1-1728-fa.html

جمشیدی اول عباس، آهنگری قاسم. نقش گیرنده های دوپامین و راه کارهای نوین درمانی در سرطان ریه از نوع سلولی غیر کوچک (NSCLC). فصلنامه علوم پزشکی. 1399; 31 (1) :39-48

URL: http://tmuj.iautmu.ac.ir/article-1-1728-fa.html



دوره 31، شماره 1 - ( بهار1400 1399 ) برگشت به فهرست نسخه ها
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4297