[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 31, Issue 3 (Fall 2021) ::
MEDICAL SCIENCES 2021, 31(3): 266-275 Back to browse issues page
Evaluation of behavior of human umbilical cord-Wharton’s jelly mesenchymal stem cell on electrospun poly (lactic acid)wax nanofibers scaffold
Tina Shafaf1, Elham Hoveizi 2, Sayed Reza Kazeminejad3
1- PhD Candidate, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2- Associate Professor, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran , e.hoveizi@yahoo.com
3- Associate Professor, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Abstract:   (294 Views)
Background: Mesenchymal stem cells are pluripotent stromal cells which are capable of differentiating into different cell lines. Nowadays, umbilical cord Wharton’s jelly (UC-WJ) are increasingly used as sources of stem cells. Studies show that scaffolds can affect the differentiation of stem cells to different cells and cause higher cell viability and proliferation as well. The present study aimed to evaluate the adhesion and viability of WJ-MSCs to PLA/Wax scaffold.
Materials and methods: PLA/Wax scaffold was prepared using electrospinning method. Adhesion and viability of MSCs on this scaffold was investigated using scanning electron microscope (SEM) and MTT assay respectively.
Results: SEM results showed that the fibers were homogeneous, uniform, and free of beads with high quality property, and adding wax to PLA significantly reduced the diameter of the nanofibers. These studies confirmed that the cells were attached to the scaffold in large numbers and with appropriate size. The results of MTT show good biocompatibility of the scaffold made with the cells and a significant increase in the survival rate of mesenchymal cells was observed during the period.
Conclusion: In conclusion, using PLA/Wax scaffold has promoted the attachment, survival and proliferation of the cells and has the potential to be an important candidate for developing the efficiency of 3D-cultures in order to cure diseases.
Keywords: Cell viability, PLA/Wax scaffold, Umbilical cord Wharton’s jelly, Adhesion, Mesenchymal stem cells.
Full-Text [PDF 443 kb]   (161 Downloads)    
Semi-pilot: Experimental | Subject: Animal Biology
Received: 2020/10/31 | Accepted: 2021/04/28 | Published: 2021/09/1
References
1. Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 2008; 57: 223-31. [DOI:10.1136/gut.2006.111617]
2. Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PloS one 2008; 3: e1451. [DOI:10.1371/journal.pone.0001451]
3. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, et al. Mesenchymal stern cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 2004; 229:623-31. [DOI:10.1177/153537020422900706]
4. Reed SA, Johnson SE. Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 2008; 215:329-36. [DOI:10.1002/jcp.21312]
5. Choong P, Mok P, Cheong S, Leong C, Then K. Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy 2007; 9:170-83. [DOI:10.1080/14653240701196829]
6. Beeravolu N, McKee C, Alamri A, Mikhael S, Brown C, Perez-Cruet M, Chaudhry GR. Isolation and Characterization of Mesenchymal Stromal Cells from Human Umbilical Cord and Fetal Placenta. J Vis Exp 2017; 3:55224. [DOI:10.3791/55224]
7. El Edel R, Khodeer S, Noreldin R, Ammar H. Isolation of Mesenchymal Stem Cells from Wharton's Jelly in Comparison with Bone Marrow and Their Endothelial Differentiation. IOSR Journal of Biotechnology and Biochemistry 2017; 3:50-57. [DOI:10.9790/264X-0301015057]
8. Himal I, Goyal U, Ta M. Evaluating Wharton's Jelly-Derived Mesenchymal Stem Cell's Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress. Stem Cells Int 2017; 17: 5259849. [DOI:10.1155/2017/5259849]
9. Kalaszczynska I, Ferdyn K. Wharton's jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int 2015; 2015:430847. [DOI:10.1155/2015/430847]
10. Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nature Protocols 2016; 11:1775-81. [DOI:10.1038/nprot.2016.123]
11. Chai JH, Wu QS. Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone) composite nanofibers. Beilstein J Nanotechnol 2013;4:189-97. [DOI:10.3762/bjnano.4.19]
12. Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 2015; 16:5517-27. [DOI:10.3390/ijms16035517]
13. Cai S, Xu H, Jiang Q, Yang Y. Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study. Langmuir 2013; 29:2311-8. [DOI:10.1021/la304414j]
14. Jiang T, Carbone EJ, Lo KW-H, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 2015; 46:1-24. [DOI:10.1016/j.progpolymsci.2014.12.001]
15. Hoveizi E, Nabiuni M, Parivar K, Ai J, Massumi M. Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold. J Biomed Mater Res A 2014 ;102:4027-36. [DOI:10.1002/jbm.a.35039]
16. Asmani MN, Ai J, Amoabediny G, Noroozi A, Azami M, Ebrahimi-Barough S, et al. Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Biol Int 2013; 37:1340-9. [DOI:10.1002/cbin.10171]
17. Sánchez-González S, Diban N, Urtiaga A. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration. Membranes (Basel) 2018;8:12. [DOI:10.3390/membranes8010012]
18. Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Farzamfar S, et al. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells. Cell Mol Neurobiol 2018; 38:703-13. [DOI:10.1007/s10571-017-0535-8]
19. Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes & development 2008; 22:3435-48. [DOI:10.1101/gad.1752608]
20. Lotfy M. Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 2006; 7:22-31.
21. Farooqui T, Farooqui AA. Beneficial effects of propolis on human health and neurological diseases. Front Biosci 2012; 4:779-93. [DOI:10.2741/e418]
22. Hoveizi E, Ebrahimi‐Barough S. Embryonic stem cells differentiated into neuron‐like cells using SB431542 small molecule on nanofibrous PLA/CS/Wax scaffold. J Cell Physiol 2019; 234:19565-73. [DOI:10.1002/jcp.28554]
23. Hoveizi E, Tavakol S. Therapeutic potential of human mesenchymal stem cells derived beta cell precursors on a nanofibrous scaffold: an approach to treat diabetes mellitus. J Cell Physiol 2019; 234:10196-204. [DOI:10.1002/jcp.27689]
24. Hoveizi E, Khodadadi S, Tavakol S, Karima O, Nasiri-Khalili MA. Small Molecules Differentiate Definitive Endoderm from Human Induced Pluripotent Stem Cells on PCL Scaffold. Appl Biochem Biotechnol 2014: 173: 1727-36. [DOI:10.1007/s12010-014-0960-9]
25. Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev Rep 2010;6:601-10. [DOI:10.1007/s12015-010-9179-5]
26. Benatti ACB, Pattaro AF, Rodrigues AA, Xavier MV, Kaasi A, Barbosa MIR, et al. Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. Biomed Mater Eng 2019; 83-116. [DOI:10.1016/B978-0-12-816901-8.00004-3]
27. Abudula T, Saeed U, Memic A, Gauthaman K, Hussain MA, Al-Turaif H. Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. J Polym Res 2019; 26:110. [DOI:10.1007/s10965-019-1772-y]
28. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences (PNAS). 2002; 99:3024-9. [DOI:10.1073/pnas.052678899]
29. Niklason L, Gao J, Abbott W, Hirschi K, Houser S, Marini R, et al. Functional arteries grown in vitro. Science 1999; 284:489-93. [DOI:10.1126/science.284.5413.489]
30. Hoveizi E, Nabiuni M, Parivar K, Rajabi-Zeleti S, Tavakol S. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 2014; 38:41-9. [DOI:10.1002/cbin.10178]
31. Shalumon K, Deepthi S, Anupama M, Nair S, Jayakumar R, Chennazhi K. Fabrication of poly (l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol 2015; 72:1048-55. [DOI:10.1016/j.ijbiomac.2014.09.058]
32. Sadeghi AR, Nokhasteh S, Molavi AM, Khorsand-Ghayeni M, Naderi-Meshkin H, Mahdizadeh A. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. Mater Sci Eng C Mater Biol Appl 2016;66:130-137. [DOI:10.1016/j.msec.2016.04.073]
33. Carrasco-Torres G, Valdés-Madrigal MA, Vásquez-Garzón VR, Baltiérrez-Hoyos R, la Cruz-Burelo D, Román-Doval R, et al. Effect of Silk Fibroin on Cell Viability in Electrospun Scaffolds of Polyethylene Oxide. Polymers 2019; 11:451. [DOI:10.3390/polym11030451]
34. Stenhamre H, Thorvaldsson A, Enochson L, Walkenström P, Lindahl A, Brittberg M, et al. Nanosized fibers' effect on adult human articular chondrocytes behavior. Mater Sci Eng C Mater Biol Appl 2013;33:1539-45. [DOI:10.1016/j.msec.2012.12.059]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shafaf T, Hoveizi E, Kazeminejad S R. Evaluation of behavior of human umbilical cord-Wharton’s jelly mesenchymal stem cell on electrospun poly (lactic acid)wax nanofibers scaffold. MEDICAL SCIENCES. 2021; 31 (3) :266-275
URL: http://tmuj.iautmu.ac.ir/article-1-1827-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 3 (Fall 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.06 seconds with 30 queries by YEKTAWEB 4355