[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 31, Issue 4 (WINTER 2021) ::
MEDICAL SCIENCES 2021, 31(4): 367-376 Back to browse issues page
Cytotoxicity effect of secondary metabolites of Streptomyces koyangensis and Streptomyces tunisiensis isolated from saline soils of Garmsar City on human breast cancer cell line (MCF-7, IBRC C10082)
Maryam Nikbakht1, Behin Omidi 2, Mohammad Ali Amoozegar3, Kumarss Amini4
1- PhD Candidate in Microbiology, Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2- Assistant Professor, Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran , behin.omidi@yahoo.com
3- Professor, Department of Microbiology, Faculty of Basic Science, University of Tehran, Tehran, Iran.
4- Associate Professor, Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
Abstract:   (1173 Views)
Background: Streptomyces is one of the most important prokaryotic microorganisms, and their secondary metabolites have high antimicrobial and cytotoxic properties. Three-quarters of the antibiotics known to be produced by these bacteria. As a result, finding new effective compounds from these microorganisms can be a way to treat cancer. The aim of this study was to isolate and screen halophilic or halotolent Streptomycetes from Garmsar salt cave soil that have the ability to produce metabolites with cytotoxic properties against human breast cancer cell line (MCF-7, IBRC C10082).
Materials and methods: Isolation of Streptomyces from soil sample was done by serial dilution method and cultured on casein agar with 15% Nacl. The isolates were identified by microscopic and macroscopic examinations and the presence of diaminopalimic acid (DAP) in their cell wall. The cytotoxic effect was evaluated using MTT assay and 16SrRNA sequencing was performed to select selected streptomycetes.
Results: Secondary metabolites of 2 Streptomyces showed a 50% reduction in the concentration of human breast cancer cells. Streptomyces sp.2 was 100% similar to Streptomyces koyangensis and Streptomyces sp.25 was 95.4% similar to Streptomyces tunisiensis.
Conclusion: The results of this study showed that Streptomyces sp.2 and Streptomyces sp.25 secondary metabolites had cytotoxic effect against MCF-7 human breast cancer cell line. The metabolite produced by them can be an option for further studies and provide more effective treatment with fewer side effects in the treatment of this disease.
Keywords: Streptomyces, Halophile, Breast cancer.
Full-Text [PDF 418 kb]   (389 Downloads)    
Semi-pilot: Experimental | Subject: Microbiology
Received: 2021/02/22 | Accepted: 2021/07/6 | Published: 2021/12/1
References
1. Prakash B, Singh PP, Kumar A, Das S, Chaudhari AK. Microbes as a novel source of secondary metabolite products of industrial significance. Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology. Elsevier; 2019, p. 21-37. [DOI:10.1016/B978-0-12-817004-5.00002-6]
2. De Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de Araújo JM. Antibiotics produced by Streptomyces. The Brazilian Journal of infectious diseases. 2012 Sep 1;16(5):466-71. [DOI:10.1016/j.bjid.2012.08.014]
3. WITT D., STACKEBRANDT E. Unification of the genera Streptoverticillum and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL, Systematic and applied microbiology 1990: 13: 361-371. [DOI:10.1016/S0723-2020(11)80234-1]
4. NGUYEN T. M., KIM J. Antifungal and antibacterial activities of Streptomyces polymachus sp. nov. isolated from soil, International Journal of Systematic and evolutionary microbiology 2015: 65: 2385-2390. [DOI:10.1099/ijs.0.000268]
5. HWONG, Alison, et al. Breast cancer screening in women with schizophrenia: a systematic review and meta-analysis. Psychiatric Services, 2020, 71.3: 263-268.‌ [DOI:10.1176/appi.ps.201900318]
6. Mie Okumuraa, Mayumi Yamamotoa,*, Hiroya Sakumaa, Toshihiro Kojimaa,Takako Maruyamaa, Marjan Jamalia, Denise R. Cooperb, Keigo Yasuda. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvementof PKC-aand PPAR expression. Biochimica et Biophysica Acta 1592 (2002) 107-116 [DOI:10.1016/S0167-4889(02)00276-8]
7. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109(7):3012-43. [DOI:10.1021/cr900019j]
8. Sivalingam P, Hong K, Pote J, Prabakar K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int J Microbiol. 2019;2019. [DOI:10.1155/2019/5283948]
9. Suutari M, Lignell U, Hyvärinen A, Nevalainen A. Media for cultivation of indoor streptomycetes. J. Microbial. Methods.2002; (51): 411-6. [DOI:10.1016/S0167-7012(02)00100-8]
10. Kämpfer P, Kroppenstedt RM. Probabilistic identification of streptomycetes using miniaturized physiological tests. Microbiol. 1991;137(8):1893-902. [DOI:10.1099/00221287-137-8-1893]
11. Sun, Y., Wang, H., Wang, W., Hu, B., Zhou, L., Ye, H., Zeng, X., Changes in molecularstructure of chickpea starch during processing treatments: a thin layer chromatography study,Food Chemistry. 2018; 186-191. [DOI:10.1016/j.foodchem.2017.09.096]
12. Saeed Ebadi, Hossein Sohrabi, Amir Peymani, Mohammad Reza Sarookhani. Identification of Antibiotic-Producing StreptomycesSpecies in Iran's soil by Phenotypic and Genotypic Methods.Biotech Health Sci. 2018 Feb; 5(1):e59854.
13. Safarpour A, Ebrahimi M, Fazeli SA, Amoozegar MA. Supernatant metabolites from halophilic archaea to reduce tumorigenesis in prostate cancer in-vitroand in-vivo. Iran. J. Pharm. Res. 2019; 18: 241-253.
14. MARMUR J., ANDERSON W., MATTHEWS L., BERNS K., GAJEWSKA E., LANE D. et al. The effects of ultraviolet light on the biological and physical chemical properties of deoxyribonucleic acids, Journal of cellular and comparative physiology 1961: 58. [DOI:10.1002/jcp.1030580406]
15. LARKIN M. A., BLACKSHIELDS G., BROWN N. P., CHENNA R., MCGETTIGAN P. A., MCWILLIAM H. et al. Clustal W and Clustal X version 2.0, bioinformatics 2007;23: 2947-2948. [DOI:10.1093/bioinformatics/btm404]
16. Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev. 2020;40(2):586-605. [DOI:10.1002/med.21627]
17. Dougan G, Dowson C, Overington J, Participants NGADS. Meeting the discovery challenge of drug-resistant infections: progress and focusing resources. Drug Discov Today. 2019;24(2):452-61. [DOI:10.1016/j.drudis.2018.11.015]
18. Kalyani BS, Krishna P, Sreenivasulu K. Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications. Saudi J Biol Sci. 2019;26(7):1655-60. [DOI:10.1016/j.sjbs.2018.08.027]
19. Obeidat M. Cytotoxicity of n-Butanol extracts of streptomyces against human breast cancer cells. Int J Pharmacol. 2017;13(8):969-79. [DOI:10.3923/ijp.2017.969.979]
20. Sagar S, Esau L, Holtermann K, Hikmawan T, Zhang G, Stingl U, Bajic V B, Kaurcor M. responding author1. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement Altern Med. 2013;13(1):344. [DOI:10.1186/1472-6882-13-344]
21. Nguyen QD, Truong PM, Vo TNT, Chu TDX, Nguyen CH. Draft genome sequence data of Streptomyces sp. SS1-1, an endophytic strain showing cytotoxicity against the human lung cancer A549 cell line. Data in brief. 2020;105497. [DOI:10.1016/j.dib.2020.105497]
22. Iacoviello L, Bonaccio M, de Gaetano G, Donati MB. Epidemiology of breast cancer, a paradigm of the "common soil" hypothesis. Semin Cancer Biol 2021;72:4-10. [DOI:10.1016/j.semcancer.2020.02.010]
23. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70:145-64. [DOI:10.3322/caac.21601]
24. Hwong A, Wang K, Bent S, Mangurian C. Breast cancer screening in women with schizophrenia: a systematic review and meta-analysis. Psychiatr Serv 2020;71:263-8. [DOI:10.1176/appi.ps.201900318]
25. Mohammadi E, Aminorroaya A, Fattahi N, Azadnajafabad S, Rezaei N, Farzi Y, et al. Epidemiologic pattern of cancers in Iran; current knowledge and future perspective. J Diabets Metab Disord 2020:1-5. [DOI:10.1007/s40200-020-00654-6]
26. Toh YL, Tan CJ, Yeo AH, Shwe M, Ho HK, Gan YX, et al. Association of plasma leptin, pro-inflammatory adipokines and cancer-related fatigue in early-stage breast cancer patients: A prospective cohort study. J Cell Mol Med 2019;23:4281-89. [DOI:10.1111/jcmm.14319]
27. Tuna BG, Cleary MP, Demirel PB, Dogan S. Leptin signaling in liver tissue of a transgenic breast cancer mouse model. Cureus 2020;12: e6737.
28. Gu L, Wang CD, Cao C, Cai LR, Li DH, Zheng YZ. Association of serum leptin with breast cancer: a meta-analysis. Medicine 2019;98: e14094. [DOI:10.1097/MD.0000000000014094]
29. Yi F, Diao S, Yuan XL, Li JY. Association of plasma leptin levels and soluble leptin receptor with breast cancer. Zhonghua Yu Fang Yi Xue Za Zhi 2018;52:253-259. [In Chinese]
30. Boothby-Shoemaker W, Benham V, Paithankar S, Shankar R, Chen B, Bernard JJ. The Relationship between Leptin, the Leptin Receptor and FGFR1 in Primary Human Breast Tumors. Cells 2020;9:2224. [DOI:10.3390/cells9102224]
31. Park JW, Han K, Shin DW, Yeo Y, Chang JW, Yoo JE, et al. Obesity and breast cancer risk for pre- and postmenopausal women among over 6 million Korean women. Breast Cancer Res Treat 2021;185:495-506. [DOI:10.1007/s10549-020-05952-4]
32. Wei ML, Duan P, Wang ZM, Ding M, Tu P. High glucose and high insulin conditions promote MCF 7 cell proliferation and invasion by upregulating IRS1 and activating the Ras/Raf/ERK pathway. Mol Med Rep 2017;16:6690-6696. [DOI:10.3892/mmr.2017.7420]
33. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019;575:299-309. [DOI:10.1038/s41586-019-1730-1]
34. Qu XY, Ren JW, Peng AH, Lin SQ, Lu DD, Du QQ, et al. Cytotoxic, Anti-Migration, and Anti-Invasion Activities on Breast Cancer Cells of Angucycline Glycosides Isolated from a Marine-Derived Streptomyces sp. Mar Drugs 2019;17:277. [DOI:10.3390/md17050277]
35. Sivalingam P, Hong K, Pote J, Prabakar K. Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads? Int J Microbiol 2019;2019:5283948. [DOI:10.1155/2019/5283948]
36. Prakash B, Singh PP, Kumar A, Das S, Chaudhari AK. Microbes as a novel source of secondary metabolite products of industrial significance. In: Kumar A, Singh AK, Choudhary KK, Editors. Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Amsterdam, Netherlands: Elsevier Science; 2019. P.21-37. [DOI:10.1016/B978-0-12-817004-5.00002-6]
37. De Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis 2012;16:466-71. [DOI:10.1016/j.bjid.2012.08.014]
38. Tangjitjaroenkun J, Pluempanupa W, Tangchitcharoenkhu R, Yahayo W, Supabpho R. Antibacterial, antioxidant, cytotoxic effects and GC-MS analysis of mangrove-derived StreptomycesachromogenesTCH4extract. Arch Biol Sci 2021;73:223-35. [DOI:10.2298/ABS210320017T]
39. Witt D., Stackebrandt E. Unification of the genera Streptoverticillum and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst Appl Microbiol 1990: 13: 361-71. [DOI:10.1016/S0723-2020(11)80234-1]
40. Nguyen T. M., Kim J. Antifungal and antibacterial activities of Streptomyces polymachus sp. nov. isolated from soil. Int J Syst Evol 2015;65: 2385-90. [DOI:10.1099/ijs.0.000268]
41. Suutari M, Lignell U, Hyvärinen A, Nevalainen A. Media for cultivation of indoor streptomycetes. J Microbial Methods 2002; 51: 411-6. [DOI:10.1016/S0167-7012(02)00100-8]
42. Nguyen HT, Pokhrel AR, Nguyen CT, Dhakal D, Lim HN, Jung HJ, et al. Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Sci Rep 2020;10:1-4. [DOI:10.1038/s41598-020-58623-1]
43. Kämpfer P, Kroppenstedt RM. Probabilistic identification of streptomycetes using miniaturized physiological tests. Microbiol 1991;137:1893-902. [DOI:10.1099/00221287-137-8-1893]
44. Sun Y, Wang H, Wang W, Hu B, Zhou L, Ye H, et al. Changes in molecularstructure of chickpea starch during processing treatments: a thin layer chromatography study, Food Chem 2018; 186-191. [DOI:10.1016/j.foodchem.2017.09.096]
45. Saadouli I, Zendah El Euch I, Trabelsi E, Mosbah A, Redissi A, Ferjani R, Fhoula I, et al. Isolation, Characterization and Chemical Synthesis of Large Spectrum Antimicrobial Cyclic Dipeptide (l-leu-l-pro) from Streptomyces misionensisV16R3Y1 Bacteria Extracts. A Novel 1H NMR Metabolomic Approach. Antibiotics (Basel) 2020;9:270. [DOI:10.3390/antibiotics9050270]
46. Safarpour A, Ebrahimi M, Shahzadeh Fazeli SA, Amoozegar MA. Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo. Iran J Pharm Res 2019;18:241-253.
47. Marmur J, Anderson W, Matthews L, Berns K, Gajewska E, Lane D, et al. The effects of ultraviolet light on the biological and physical chemical properties of deoxyribonucleic acids. J Cell Physiol 1961: 58. [DOI:10.1002/jcp.1030580406]
48. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8. [DOI:10.1093/bioinformatics/btm404]
49. Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev 2020;40:586-605. [DOI:10.1002/med.21627]
50. Dougan G, Dowson C, Overington J; Next Generation Antibiotic Discovery Symposium Participants. Meeting the discovery challenge of drug-resistant infections: progress and focusing resources. Drug Discov Today 2019;24:452-61. [DOI:10.1016/j.drudis.2018.11.015]
51. Ser HL, Tan LTH, Tan WS, Yin WF, Chan KG. Whole-genome sequence of bioactive streptomycete derived from mangrove forest in Malaysia, Streptomyces sp. MUSC 14. Progress In Microbes & Molecular Biology 2021;1; a0000195. doi: a0000195. [DOI:10.36877/pmmb.a0000195]
52. Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG, et al. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020;25:5365. [DOI:10.3390/molecules25225365]
53. Kalyani BS, Krishna PS, Sreenivasulu K. Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications. Saudi J Biol Sci 2019;26:1655-1660. [DOI:10.1016/j.sjbs.2018.08.027]
54. Obeidat M. Cytotoxicity of n-Butanol extracts of streptomyces against human breast cancer cells. Int J Pharmacol 2017;13:969-79. [DOI:10.3923/ijp.2017.969.979]
55. Sagar S, Esau L, Holtermann K, Hikmawan T, Zhang G, Stingl U, et al. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement Altern Med 2013;13:344. [DOI:10.1186/1472-6882-13-344]
56. Schulz D, Nachtigall J, Geisen U, Kalthoff H, Imhoff JF, Fiedler HP, et al. Silvalactam, a 24-membered macrolactam antibiotic produced by Streptomyces sp.Tu 6392. J Antibiot (Tokyo) 2012;65:369-72. [DOI:10.1038/ja.2012.33]
57. Chiu CF, Chiu SJ, Bai LY, Feng CH, Hu JL, Lin WY, et al. A macrolide from Streptomyces sp. modulates apoptosis and autophagy through Mcl‐1 downregulation in human breast cancer cells. Environ Toxicol 2021;13. [DOI:10.1002/tox.23128]
58. Rajivgandhi GN, Ramachandran G, Li JL, Yin L, Manoharan N, Kannan MR, et al. Molecular identification and structural detection of anti-cancer compound from marine Streptomyces akiyoshiensis GRG 6 (KY457710) against MCF-7 breast cancer cells. J King Saud Univ Sci 2020;32:3463-9. [DOI:10.1016/j.jksus.2020.10.008]
59. Elkhateeb WA, Mohamed MA, Fayad W, Emam M, Nafady IM, Daba GM. Molecular Identification, Metabolites profiling, Anti-breast cancer, Anti-colorectal cancer, and antioxidant potentials of Streptomyces zaomyceticus AA1 isolated from a remote bat cave in Egypt. Res J Pharm Technol 2020;13:3072-80. [DOI:10.5958/0974-360X.2020.00545.4]
60. Kumar P, Chauhan A, Kumar M, Kuanr B.K, Kundu A, Solanki R , et al. In vitro and in silico anticancer potential analysis of Streptomyces sp. extract against human lung cancer cell line, A549. 3 Biotech. 2021;11: 254. [DOI:10.1007/s13205-021-02812-w]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nikbakht M, Omidi B, Amoozegar M A, Amini K. Cytotoxicity effect of secondary metabolites of Streptomyces koyangensis and Streptomyces tunisiensis isolated from saline soils of Garmsar City on human breast cancer cell line (MCF-7, IBRC C10082). MEDICAL SCIENCES. 2021; 31 (4) :367-376
URL: http://tmuj.iautmu.ac.ir/article-1-1861-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 4 (WINTER 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4419