[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 31, Issue 3 (Fall 2021) ::
MEDICAL SCIENCES 2021, 31(3): 328-337 Back to browse issues page
Evaluation of the prevalence of Mycobacterium tuberculosis strains isolated from tuberculosis patients referred to Pasteur Institute of Iran
Nayereh Ebrahimzadeh1 , Shiva Irani2 , Shohreh Khatami3 , Seyed Davar Siadat 4
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
3- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
4- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran -Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran , d.siadat@gmail.com
Abstract:   (1887 Views)
Background: Tuberculosis is a threat to public health. The epidemiology of tuberculosis can be effective in identifying the source of infection, the dominant circulating strains and achieving transmission pathways in the world. The aim of this study was to determine the genotype of Mycobacterium tuberculosis (M. tb) strains in patients referred to Pasteur Institute of Iran between 2018 and 2019.
Materials and methods: In this study, 50 confirmed M. tb strains were evaluated. After M. tb strains identification and determining the drug susceptibility test, all strains were genotyped by MIRU-VNTR (Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat) method.
Results: The most frequent genotype in all strains was CAS/Delhi (42%), followed by Haarlem (24%), NEW-1 (10%), LAM (8%), Beijing (8%), Cameroon (4%), EAI (% 2) and S (2%). Three clonal complexes and 44 singleton isolates were identified. Beijing genotype was the common genotype in MDR-TB strains. Also, QUB26 and QUB4156 loci had shown the highest of discriminative and allelic diversity.
Conclusion: CAS/Delhi and Beijing genotypes were introduced as the dominant genotypes in drug sensitive and MDR strains, respectively.
Keywords: Mycobacterium tuberculosis, MIRU-VNTR, Genotype.
Full-Text [PDF 397 kb]   (932 Downloads)    
Semi-pilot: case-control | Subject: Microbiology
Received: 2020/12/27 | Accepted: 2021/04/20 | Published: 2021/09/1
1. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol 2003;41:359-67. [DOI:10.1128/JCM.41.1.359-367.2003]
2. Lee H-M, Yuk J-M, Shin D-M, Jo E-K. Dectin-1 is inducible and plays an essential role for mycobacteria-induced innate immune responses in airway epithelial cells. J Clin Immun 2009;29:795. [DOI:10.1007/s10875-009-9319-3]
3. World Health Organization. Global TB report 2019. Geneva, Switzerland: WHO; 2019.
4. Idh J, Andersson B, Lerm M, Raffetseder J, Eklund D, Woksepp H, et al. Reduced susceptibility of clinical strains of Mycobacterium tuberculosis to reactive nitrogen species promotes survival in activated macrophages. PloS one 2017;12:e0181221. [DOI:10.1371/journal.pone.0181221]
5. Di Pietrantonio T, Schurr E. Host-Pathogen Specificity in Tuberculosis. The New Paradigm of Immunity to Tuberculosis: Adv Exp Med Biol 2013;783:33-44. [DOI:10.1007/978-1-4614-6111-1_2]
6. Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 2007;7:328-37. [DOI:10.1016/S1473-3099(07)70108-1]
7. Nicol MP, Wilkinson RJ. The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg 2008;102:955-65. [DOI:10.1016/j.trstmh.2008.03.025]
8. Yimer SA, Norheim G, Namouchi A, Zegeye ED, Kinander W, Tønjum T, et al. Mycobacterium tuberculosis lineage 7 strains are associated with prolonged patient delay in seeking treatment for pulmonary tuberculosis in Amhara Region, Ethiopia. J Clin Microb 2015;53:1301-9. [DOI:10.1128/JCM.03566-14]
9. Agielski T, van Ingen J, Rastogi N, Dziadek J, Mazur PK, Bielecki J. Current methods in the molecular typing of Mycobacterium tuberculosis and other mycobacteria. Biomed Res Int 2014;2014:645802. [DOI:10.1155/2014/645802]
10. Ravansalar H, Tadayon K, Mosavari N, Derakhshan M, Ghazvini K. Genetic diversity of Mycobacterium tuberculosis complex isolated from patients in the Northeast of Iran by MIRU-VNTR and spoligotyping. Jundishapur J Microbiol 2016; 10: e39568. [DOI:10.5812/jjm.39568]
11. Kremer K, Arnold C, Cataldi A, Gutiérrez MC, Haas WH, Panaiotov S, et al. Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J Clin Microb 2005;43:5628-38. [DOI:10.1128/JCM.43.11.5628-5638.2005]
12. McLernon J, Costello E, Flynn O, Madigan G, Ryan F. Evaluation of mycobacterial interspersed repetitive-unit-variable-number tandem-repeat analysis and spoligotyping for genotyping of Mycobacterium bovis isolates and a comparison with restriction fragment length polymorphism typing. J Clin Microb 2010;48:4541-5. [DOI:10.1128/JCM.01175-10]
13. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microb 2006;44:4498-510. [DOI:10.1128/JCM.01392-06]
14. Azé J, Sola C, Zhang J, Lafosse-Marin F, Yasmin M, Siddiqui R, et al. Genomics and machine learning for taxonomy consensus: the Mycobacterium tuberculosis complex paradigm. PloS one 2015;10:e0130912. [DOI:10.1371/journal.pone.0130912]
15. Christianson S, Wolfe J, Orr P, Karlowsky J, Levett PN, Horsman GB, et al. Evaluation of 24 locus MIRU-VNTR genotyping of Mycobacterium tuberculosis isolates in Canada. Tuberculosis 2010;90:31-8. [DOI:10.1016/j.tube.2009.12.003]
16. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microb 1988;26:2465-6. [DOI:10.1128/jcm.26.11.2465-2466.1988]
17. Supply P, Lesjean S, Savine E, Kremer K, Van Soolingen D, Locht C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microb 2001;39:3563-71. [DOI:10.1128/JCM.39.10.3563-3571.2001]
18. Babai Kochkaksaraei M, Kaboosi H, Ghaemi EA. Genetic variation of the Mycobacterium tuberculosis in north of Iran; the Golestan Province. Iran Red Crescent Med J 2019;21: e91553. [DOI:10.5812/ircmj.91553]
19. Almaraz-Velasco R, Munro-Rojas D, Fuentes-Domínguez J, Muñiz-Salazar R, Ibarra-Estela MA, Guevara-Méndez AD, et al. A first insight into the genetic diversity of Mycobacterium tuberculosis in Veracruz, Mexico. Int J Mycobacteriol 2017;6:14. [DOI:10.4103/2212-5531.201886]
20. Mansoori N, Yaseri M, Vaziri F, Douraghi M. Genetic diversity of Mycobacterium tuberculosis complex isolates circulating in an area with high tuberculosis incidence: Using 24-locus MIRU-VNTR method. Tuberculosis 2018;112:89-97. [DOI:10.1016/j.tube.2018.08.003]
21. Mansoori N, Vaziri F, Amini S, Khanipour S, Dizaji SP, Douraghi M. Spoligotype and Drug Susceptibility Profiles of Mycobacterium tuberculosis Complex Isolates in Golestan Province, North Iran. Infect Drug Resist 2020;13:2073. [DOI:10.2147/IDR.S255889]
22. Al-Hajoj S, Varghese B, Al-Habobe F, Shoukri MM, Mulder A, van Soolingen D. Current trends of Mycobacterium tuberculosis molecular epidemiology in Saudi Arabia and associated demographical factors. Infect Genet Evol 2013;16:362-8. [DOI:10.1016/j.meegid.2013.03.019]
23. Shafee M, Abbas F, Tanveer Z, Whitelaw A, Tow LA, Ashraf M, et al. Predominance of Central Asian strain (ST 26) in Mycobacterium tuberculosis isolates from Balochistan by spoligotyping. J Infect Dev Ctries 2019;13:619-25. [DOI:10.3855/jidc.10803]
24. Sharma P, Katoch K, Chandra S, Chauhan DS, Sharma VD, Couvin D, et al. Comparative study of genotypes of Mycobacterium tuberculosis from a Northern Indian setting with strains reported from other parts of India and neighboring countries. Tuberculosis 2017;105:60-72. [DOI:10.1016/j.tube.2017.04.003]
25. Velayati AA, Farnia P, Mozafari M, Sheikholeslami MF, Karahrudi MA, Tabarsi P, et al. High prevalence of rifampin-monoresistant tuberculosis: a retrospective analysis among Iranian pulmonary tuberculosis patients. The Am J Trop Med Hyg 2014;90:99-105. [DOI:10.4269/ajtmh.13-0057]
26. Hadifar S, Fateh A, Pourbarkhordar V, Siadat SD, Mostafaei S, Vaziri F. Variation in Mycobacterium tuberculosis population structure in Iran: a systemic review and meta-analysis. BMC Infec Dis 2021;21:1-11. [DOI:10.1186/s12879-020-05639-7]
27. Hadifar S, Kamakoli MK, Fateh A, Siadat SD, Vaziri F. Enhancing the differentiation of specific genotypes in Mycobacterium tuberculosis population. Sci Rep 2019;9:1-9. [DOI:10.1038/s41598-019-54393-7]
28. Brites D, Gagneux S. The nature and evolution of genomic diversity in the Mycobacterium tuberculosis complex. Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Adv Exp Med Biol 2017; 1-26. [DOI:10.1007/978-3-319-64371-7_1]
29. Gagneux S, Editor. Strain variation in the Mycobacterium tuberculosis complex: its role in biology, epidemiology and control. Switzerland: Springer International Publishing; 2017. [DOI:10.1007/978-3-319-64371-7]
30. Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016;48:1535-43. [DOI:10.1038/ng.3704]
31. Vaziri F, Kohl TA, Ghajavand H, Kamakoli MK, Merker M, Hadifar S, et al. Genetic diversity of multi-and extensively drug-resistant Mycobacterium tuberculosis Isolates in the capital of Iran, revealed by whole-genome sequencing. J Clin Microb 2019 2;57:01477-18. [DOI:10.1128/JCM.01477-18]
32. Asgharzadeh M, Kafil HS, Roudsary AA, Hanifi GR. Tuberculosis transmission in Northwest of Iran: using MIRU-VNTR, ETR-VNTR and IS6110-RFLP methods. Infect Genet Evol 2011;11:124-31. [DOI:10.1016/j.meegid.2010.09.013]
33. Azimi T, Shariati A, Fallah F, Imani Fooladi AA, Hashemi A, Goudarzi H, et al. Mycobacterium tuberculosis genotyping using MIRU-VNTR typing. J Mazandaran Uni Med Sci 2017;27:40-8.
34. Zhao Y, Feng Q, Tang K, Zhang C, Sun H, Luo T, et al. The population structure of drug-resistant Mycobacterium tuberculosis clinical isolates from Sichuan in China. Infect Genet Evol 2012;12:718-24. [DOI:10.1016/j.meegid.2011.09.022]
35. Luo T, Yang C, Pang Y, Zhao Y, Mei J, Gao Q. Development of a hierarchical variable-number tandem repeat typing scheme for Mycobacterium tuberculosis in China. PloS one 2014;9:e89726. [DOI:10.1371/journal.pone.0089726]
36. Iwamoto T, Yoshida S, Suzuki K, Tomita M, Fujiyama R, Tanaka N, et al. Hypervariable loci that enhance the discriminatory ability of newly proposed 15-loci and 24-loci variable-number tandem repeat typing method on Mycobacterium tuberculosis strains predominated by the Beijing family. FEMS Microbial 2007;270:67-74. [DOI:10.1111/j.1574-6968.2007.00658.x]
37. Shamputa IC, Lee J, Allix-Béguec C, Cho E-J, Rajan V, Lee EG, et al. Genetic diversity of Mycobacterium tuberculosis isolates from a tertiary care tuberculosis hospital in South Korea. J Clin Microb 2010;48:387-94. [DOI:10.1128/JCM.02167-09]
38. Shi J, Zheng D, Zhu Y, Ma X, Wang S, Li H, et al. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of M
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimzadeh N, Irani S, Khatami S, Siadat S D. Evaluation of the prevalence of Mycobacterium tuberculosis strains isolated from tuberculosis patients referred to Pasteur Institute of Iran. MEDICAL SCIENCES 2021; 31 (3) :328-337
URL: http://tmuj.iautmu.ac.ir/article-1-1875-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 3 (Fall 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4652