[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 33, Issue 2 (summer 2023) ::
MEDICAL SCIENCES 2023, 33(2): 122-132 Back to browse issues page
The effect of Naringin on hippocampal cell damage and the antioxidant defense system of the fetal forebrain in an animal model of uteroplacental insufficiency
Samireh Nemati1 , Mohammad Amin Edalatmanesh 2, Mohsen Forouzanfar3
1- PhD Candidate in Cell and Developmental Biology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2- of Physiology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran , amin.edalatmanesh@gmail.com
3- of Developmental Biology, Department of Biology, College of Sciences, Marvdasht Branch, Islamic Azad University, Shiraz, Iran
Abstract:   (550 Views)
Background: Uteroplacental insufficiency (UPI) by inducing oxidative stress in the fetal brain leads to disruption of its development. The present study evaluated the effects of Naringin on the antioxidant defense system in the fetal forebrain and prevention of the hippocampal damage following UPI.
Materials and methods: 20 pregnant Wistar rats were randomly divided into 4 groups: control, UPI+Saline, UPI+Nar50 (UPI+naringin with a dose of 50 mg/kg) and UPI+Nar100 (UPI+ naringin with a dose of 100 mg/kg). In order to induce UPI, permanent occlusion of the anterior uterine vessels was performed on the embryonic day (ED) 18. Naringin and saline were gavagd from ED12-18. On the ED21, measuring the level of catalase (CAT), superoxide dismutase (SOD) and antioxidant capacity (TAC) by ELISA technique and malondialdehyde (MDA) by thiobarbituric acid method in the fetal forebrain and evaluating neuronal density in the CA1 and CA3 areas of the hippocampus were done.
Results: A significant decrease in the brain activity of CAT, SOD, TAC and neuronal density in the CA1/CA3 areas of the hippocampus along with a significant increase in MDA was seen in the UPI+Saline group compared to the control group (p<0.05). While, a significant increase in CAT, SOD, TAC and CA1/CA3 neuronal density and a significant decrease in MDA was seen in the groups receiving Naringin compared to the UPI+Saline group (p<0.05).
Conclusion: Administering Naringin before induction of UPI by strengthening the antioxidant system in the fetal forebrain caused the prevention of neurological complications caused by UPI in the fetal brain.
 
Keywords: Intrauterine growth restriction, Naringin, oxidative stress, hippocampus, rat
Full-Text [PDF 428 kb]   (285 Downloads)    
Semi-pilot: Experimental | Subject: Animal Biology
Received: 2023/01/8 | Accepted: 2023/02/25 | Published: 2023/05/31
References
1. Darendeliler F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management. Best Pract Res Clin Endocrinol Metab 2019;33:101260. [DOI:10.1016/j.beem.2019.01.001]
2. Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S, Simonelli A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr 2020;174:772-781. [DOI:10.1001/jamapediatrics.2020.1097]
3. Kesavan K, Devaskar SU. Intrauterine Growth Restriction: Postnatal Monitoring and Outcomes. Pediatr Clin North Am 2019;66:403-23. [DOI:10.1016/j.pcl.2018.12.009]
4. Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med 2018;23:119-25. [DOI:10.1016/j.siny.2017.11.004]
5. Ling L, Chen T, Zhang XH, Pan MH, Gong HH, Zhang LN, et al. Risk Factors for Short Stature in Children Born Small for Gestational Age at Full-Term. Front Pediatr 2022;10:833606. [DOI:10.3389/fped.2022.833606]
6. Schömig C, Oberholz L, Fink G, Voggel J, Wohlfarth M, Dötsch J, Nüsken KD, Nüsken E. Hippocampal mTOR Dysregulation and Morphological Changes in Male Rats after Fetal Growth Restriction. Nutrients 2022;14:451. [DOI:10.3390/nu14030451]
7. Jarvis S, Glinianaia SV, Arnaud C, Fauconnier J, Johnson A, McManus V, et al. Case gender and severity in cerebral palsy varies with intrauterine growth. Arch Dis Child 2005;90:474-79. [DOI:10.1136/adc.2004.052670]
8. Dötsch J, Plank C, Amann K, Ingelfinger J. The implications of fetal programming of glomerular number and renal function. J Mol Med 2009;87:841-48. [DOI:10.1007/s00109-009-0507-7]
9. Abdollahi H, Edalatmanesh MA, Hosseini E, Foroozanfar M. The Effects of Hesperidin on BDNF/TrkB Signaling Pathway and Oxidative Stress Parameters in the Cerebral Cortex of the Utero-placental Insufficiency Fetal Rat Model. Basic Clin Neurosci 2021;12:511-22. [DOI:10.32598/bcn.2021.2187.1]
10. Nguyen TA, Kahn DA, Loewendorf AI. Maternal-Fetal rejection reactions are unconstrained in preeclamptic women. PLoS One 2017;12:e0188250. [DOI:10.1371/journal.pone.0188250]
11. Schober ME, McKnight RA, Yu X, Callaway CW, Ke X, Lane RH. Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am J Physiol Regul Integr Comp Physiol 2009;296:R681-92. [DOI:10.1152/ajpregu.90396.2008]
12. Fung C, Ke X, Brown AS, Yu X, McKnight RA, Lane RH. Uteroplacental insufficiency alters rat hippocampal cellular phenotype in conjunction with ErbB receptor expression. Pediatr Res 2012;72:2-9. [DOI:10.1038/pr.2012.32]
13. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2018; 16:80. [DOI:10.1186/s12958-018-0391-5]
14. Raja Kumar S, Mohd Ramli ES, Abdul Nasir NA, Ismail NHM, Mohd Fahami NA. Preventive Effect of Naringin on Metabolic Syndrome and Its Mechanism of Action: A Systematic Review. Evid Based Complement Alternat Med 2019;2019:9752826. [DOI:10.1155/2019/9752826]
15. Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 2014;5:404-17. [DOI:10.3945/an.113.005603]
16. Zhai X, Dai T, Chi Z, Zhao Z, Wu G, Yang S, Dong D. Naringin alleviates acetaminophen-induced acute liver injury by activating Nrf2 via CHAC2 upregulation. Environ Toxicol 2022;37:1332-1342. [DOI:10.1002/tox.23487]
17. Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020;158:104877. [DOI:10.1016/j.phrs.2020.104877]
18. Esfandiari Z, Edalatmanesh MA. Neuroprotective effect of Gallic acid on memory deficit and content of BDNF in brain entorhinal cortex of rat's offspring in uteroplacental insufficiency model. J Shahid Sadoughi Uni Med Sci 2019; 27: 1864-76. [In Persian] [DOI:10.18502/ssu.v27i9.2306]
19. Safarpour M, Edalatmanesh M A, Hossini S E, Forouzanfar M. Neuroprotective Effect of Cinnamic Acid on Cognitive Impairment and the Level of Oxidative Stress Indicators in Rat's Offspring in an Uteroplacental Insufficiency Model. Sci J Illam Med Univ. 2020; 28 :33-46. [In Persian] [DOI:10.29252/sjimu.28.6.33]
20. Abdollahi H, Edalatmanesh M A, Hosseini S E, Forouzanfar M. The influence of Hesperidin on memory, learning and oxidative stress parameters in rat model of utreoplacental insufficiency. Feyz 2021; 25:704-713. [In Persian]
21. Safarpour M, Edalatmanesh MA, Hosseini SE, Foroozanfar M. The effect of cinnamic acid on fetal hippocampus in pregnant rats. Comp Clin Pathol 2020; 29: 945-54. [DOI:10.1007/s00580-020-03118-8]
22. McLaughlin EJ, Hiscock RJ, Robinson AJ, Hui L, Tong S, Dane KM, Middleton AL, Walker SP, MacDonald TM. Appropriate-for-gestational-age infants who exhibit reduced antenatal growth velocity display postnatal catch-up growth. PLoS One 2020;15:e0238700. [DOI:10.1371/journal.pone.0238700]
23. Zong L, Chu P, Huang P, Guo Y, Lv Y. Effect of vitamin D on the learning and memory ability of FGR rat and NMDA receptor expression in hippocampus. Exp Ther Med 2017;14:581-86. [DOI:10.3892/etm.2017.4523]
24. Baker BC, Heazell AEP, Sibley C, Wright R, Bischof H, Beards F, Guevara T, Girard S, Jones RL. Hypoxia and oxidative stress induce sterile placental inflammation in vitro. Sci Rep 2021;11:7281. [DOI:10.1038/s41598-021-86268-1]
25. DuPriest E, Hebert J, Morita M, Marek N, Meserve EEK, Andeen N, Houseman EA, Qi Y, Alwasel S, Nyengaard J, Morgan T. Fetal Renal DNA Methylation and Developmental Programming of Stress-Induced Hypertension in Growth-Restricted Male Mice. Reprod Sci 2020;27:1110-20. [DOI:10.1007/s43032-019-00121-5]
26. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017;39:73-82. [DOI:10.1080/01616412.2016.1251711]
27. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 2017;524:13-30. [DOI:10.1016/j.ab.2016.10.021]
28. Gindri Dos Santos B, Peres Klein C, Scortegagna Crestani M, Moura Maurmann R, Mateus Hözer R, Dos Santos Rodrigues K, Maciel August P, Matté C. Naringin Supplementation during Pregnancy Induces Sex and Region-Specific Alterations in the Offspring's Brain Redox Status. Int J Environ Res Public Health 2021;18:4805. [DOI:10.3390/ijerph18094805]
29. Yousefi-Ghalati M, Edalatmanesh M A. The effect of Gallic acid on fetus viability and hippocampal cell damages in rat model of utreo-placental insufficiency. J Neyshabur Univ Med Sci 2019; 7:16-30. [In Persian]
30. Gilchrist CP, Cumberland AL, Kondos-Devcic D, Hill RA, Khore M, Quezada S, Reichelt AC, Tolcos M. Hippocampal neurogenesis and memory in adolescence following intrauterine growth restriction. Hippocampus. 2021;31:321-34. [DOI:10.1002/hipo.23291]
31. Gilchrist CP, Cumberland AL, Kondos-Devcic D, Hill RA, Khore M, Quezada S, Reichelt AC, Tolcos M. Hippocampal neurogenesis and memory in adolescence following intrauterine growth restriction. Hippocampus 2021;31:321-34. [DOI:10.1002/hipo.23291]
32. Hayashi K, Kubo K, Kitazawa A, Nakajima K. Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 2015;9:135. [DOI:10.3389/fnins.2015.00135]
33. Bock J, Murmu MS, Biala Y, Weinstock M, Braun K. Prenatal stress and neonatal handling induce sex-specific changes in dendritic complexity and dendritic spine density in hippocampal subregions of prepubertal rats. Neuroscience 2011;193:34-43. [DOI:10.1016/j.neuroscience.2011.07.048]
34. Schober ME, McKnight RA, Yu X, Callaway CW, Ke X, Lane RH. Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am J Physiol Regul Integr Comp Physiol 2009;296:R681-92. [DOI:10.1152/ajpregu.90396.2008]
35. Tolsa CB, Zimine S, Warfield SK, Freschi M, Sancho Rossignol A, Lazeyras F, Hanquinet S, Pfizenmaier M, Huppi PS. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 2004;56:132-38. [DOI:10.1203/01.PDR.0000128983.54614.7E]
36. Viswanatha GL, Shylaja H, Moolemath Y. The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta-analysis. Biomed Pharmacother 2017;94:909-29. [DOI:10.1016/j.biopha.2017.07.072]
37. Ahmed S, Khan H, Aschner M, Hasan MM, Hassan STS. Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019;132:110646. [DOI:10.1016/j.fct.2019.110646]
38. Zhao Y, Liu S. Bioactivity of naringin and related mechanisms. Pharmazie 2021;76:359-63.
39. Garabadu D, Agrawal N. Naringin Exhibits Neuroprotection against Rotenone-Induced Neurotoxicity in Experimental Rodents. Neuromolecular Med 2020;22:314-30. [DOI:10.1007/s12017-019-08590-2]
40. Akamo AJ, Rotimi SO, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, et al. Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation. Food Chem Toxicol 2021;153:112266.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nemati S, Edalatmanesh M A, Forouzanfar M. The effect of Naringin on hippocampal cell damage and the antioxidant defense system of the fetal forebrain in an animal model of uteroplacental insufficiency. MEDICAL SCIENCES 2023; 33 (2) :122-132
URL: http://tmuj.iautmu.ac.ir/article-1-2090-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 33, Issue 2 (summer 2023) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4642