[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 35, Issue 1 (spring 2025) ::
MEDICAL SCIENCES 2025, 35(1): 14-23 Back to browse issues page
Epigenetic silencing of DDIT3 gene and its relationship with imatinib resistance, disease progression and smoking status among patients with chronic myeloid leukemia
Maryam Foroutanjazi1 , Mohammad Hamid2 , Mitra Salehi3 , Mehrdad Hashemi4
1- PhD Student, Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
2- Associate Professor, Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran , hamid143@yahoo.com
3- Assistant Professor, Department of Biology, Faculty of Biology Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
4- Professor, Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , Professor, Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:   (613 Views)

Background: The evolution of resistance to imatinib and disease progression are multifactorial events in CML patients. These events are not only determined by BCR-ABL1 dependent pathway but also are involved a number of other genetic and epigenetic aberrations including DNA methylation. We aimed to investigate the role of DDIT3 (DNA-damage-inducible transcript 3) gene methylation in relation to respose to imatinib, CML progression, and also investigate the impact of the smoking on methylation level.

Materials and methods: 50 CML patients at different clinical stages of the disease (including 20 good response and 30 non-mutated imatinib resistant patients) and 15 health control were recruited for methylation levels evaluation of promoter DDIT3 gene by MS-HRM (Methylation Sensitive High Resolution Melt) analysis.

Results: There was significant difference in the mean (±standard deviation) of DDIT3 methylation percentage between two response groups (63.8±17.79 vs 47.75±14.18, P=0.002). DDIT3 promoter hypermethylation in 51-100% level indicated a higher risk for progression to advance phase (OR= 5.75; 95% CI: 1.40-23.49; P= 0.01) and imatinib resistance (OR= 8.5; 95% CI: 1.96-36.79; P= 0.004). Importantly, smokers were associated with a higher percentage of DDIT3 methylation (OR= 11.8; 95% CI, 2.67-52.67; P=0.001).

Conclusion: Our findings indicated that hypermethylation of DDIT3 gene is associated with imatinib resistance, CML progression and smoking. Further investigations on a more number is needed to confirm of these results that could be suggest as potential biomarker of disease progression and resistance to imatinib.

Keywords: Chronic myeloid leukemia, DDIT3, Hypermethylation, Imatinib resistance, Smoke.
Full-Text [PDF 1104 kb]   (204 Downloads)    
Semi-pilot: Cohort | Subject: Oncology
Received: 2024/01/6 | Accepted: 2024/04/22 | Published: 2025/03/30
References
1. Mughal TI, Radich JP, Deininger MW, Apperley JF, Hughes TP, Harrison CJ, et al. Chronic myeloid leukemia: reminiscences and dreams. Haematologica 2016;101:541-58. [DOI:10.3324/haematol.2015.139337]
2. Benchikh S, Bousfiha A, El Hamouchi A, Soro SGC, Malki A, Nassereddine S. Chronic myeloid leukemia: cytogenetics and molecular biology's part in the comprehension and management of the pathology and treatment evolution. Egypt J Med Hum Genet 2022;23:1-13. [DOI:10.1186/s43042-022-00248-2]
3. Rostami G, Assad D, Ghadyani F, Hamid M, Karami A, Jalaeikhoo H, et al. Influence of glutathione S‐transferases (GSTM1, GSTT1, and GSTP1) genetic polymorphisms and smoking on susceptibility risk of chronic myeloid leukemia and treatment response. Mol Genet Genomic Med 2019;7:e00717. [DOI:10.1002/mgg3.717]
4. Adnan Awad S, Kankainen M, Ojala T, Koskenvesa P, Eldfors S, Ghimire B, et al. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv 2020;4:546-59. [DOI:10.1182/bloodadvances.2019000943]
5. Mohammadi F, Shafiei M, Assad D, Rostami G, Hamid M, Foroughmand AM. Impact of ABCB1 Gene Polymorphisms and Smoking on the Susceptibility Risk of Chronic Myeloid Leukemia and Cytogenetic Response. Iran Biomed J 2021;25:54-61.
6. Wu W, Xu N, Zhou X, Liu L, Tan Y, Luo J, et al. Integrative genomic analysis reveals cancer-associated gene mutations in chronic myeloid leukemia patients with resistance or intolerance to tyrosine kinase inhibitor. Onco Targets Ther 2020;13:8581-8591. [DOI:10.2147/OTT.S257661]
7. Ernst T, La Rosée P, Müller MC, Hochhaus A. BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am 2011; 25: 997-1008. [DOI:10.1016/j.hoc.2011.09.005]
8. Rostami G, Hamid M, Yaran M, Khani M , Karimipoor M. Incidence and clinical importance of BCR-ABL1 mutations in Iranian patients with chronic myeloid leukemia on imatinib. J Hum Genet 2015; 60: 253-258. [DOI:10.1038/jhg.2015.11]
9. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al. HOXA4 gene promoter hypermethylation as an epigenetic mechanism mediating resistance to imatinib mesylate in chronic myeloid leukemia patients. Biomed Res Int 2013;2013. [DOI:10.1155/2013/129715]
10. Guru SA, Sumi MP, Mir AR, Beg MMA, Saxena A. Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival. BMC Cancer 2022; 22:1-15. [DOI:10.1186/s12885-022-09481-9]
11. Yang X, Wong MPM, Ng RK. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci 2019;20:4576. [DOI:10.3390/ijms20184576]
12. Amabile G, Di Ruscio A, Müller F, Welner RS, Yang H, Ebralidze AK, et al. Dissecting the role of aberrant DNA methylation in human leukaemia. Nat Commun 2015;6:1-10. [DOI:10.1038/ncomms8091]
13. Jelinek J, Gharibyan V, Estecio MR, Kondo K, He R, Chung W, et al. Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. PLoS One 2011;6:e22110. [DOI:10.1371/journal.pone.0022110]
14. Wang Y-l, Qian J, Lin J, Yao D-m, Qian Z, Zhu Z-h, et al. Methylation status of DDIT3 gene in chronic myeloid leukemia. J Exp Clin Cancer Res 2010;29:54. [DOI:10.1186/1756-9966-29-54]
15. Radin D, Hamid M, Kargar M, Jafarinia M. Hypermethylation of HOXA4 Gene Promoter and Its Potential Association with Disease Progression, Imatinib Resistance, High Sokal Score Risk, and Smoking among Chronic Myeloid Leukemia Patients. Russ J Genet 2023;59:S199-207. [DOI:10.1134/S1022795423140090]
16. Qian J, Chen Z, Lin J, Wang W, Cen J. Decreased expression of CCAAT/enhancer binding protein ζ (C/EBPζ) in patients with different myeloid diseases. Leuk Res 2005;29:1435-41. [DOI:10.1016/j.leukres.2005.05.020]
17. Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M, et al. Comparison of promoter DNA methylation and expression levels of genes encoding CCAAT/enhancer binding proteins in AML patients. Leuk Res 2014;38:850-6. [DOI:10.1016/j.leukres.2014.04.013]
18. Lin J, Wang Y-l, Qian J, Yao D-m, Zhu Z-h, Qian Z, et al. Aberrant methylation of DNA-damage-inducible transcript 3 promoter is a common event in patients with myelodysplastic syndrome. Leuk Res 2010;34:991-4. [DOI:10.1016/j.leukres.2010.01.003]
19. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European Leukemia Net recommendations for the Management of chronic myeloid leukemia. Blood 2013;122:872-884. [DOI:10.1182/blood-2013-05-501569]
20. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215. [DOI:10.1093/nar/16.3.1215]
21. Wojdacz TK, Borgbo T, Hansen LL. Primer design versus PCR bias in methylation independent PCR amplifications. Epigenetics 2009; 4: 231-4. [DOI:10.4161/epi.9020]
22. Mir R, Ahmad I, Javid J, Farooq S, Yadav P, Zuberi M, et al. Epigenetic silencing of DAPK1 gene is associated with faster disease progression in India populations with Chronic Myeloid Leukemia. J Cancer Sci Ther 2013;5:144-149. [DOI:10.4172/1948-5956.1000201]
23. Lee KWK, Pauzova Z. Cigarette smoking and DNA methylation. Front Genet 2013;4:132. [DOI:10.3389/fgene.2013.00132]
24. Zong D, Liu X, Li J, Ouyang R, Chen P.The role of cigarette smoke induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019;12:65 [DOI:10.1186/s13072-019-0311-8]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Foroutanjazi M, Hamid M, Salehi M, Hashemi M. Epigenetic silencing of DDIT3 gene and its relationship with imatinib resistance, disease progression and smoking status among patients with chronic myeloid leukemia. MEDICAL SCIENCES 2025; 35 (1) :14-23
URL: http://tmuj.iautmu.ac.ir/article-1-2181-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 35, Issue 1 (spring 2025) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4710