[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 3 (Fall 2024) ::
MEDICAL SCIENCES 2024, 34(3): 237-244 Back to browse issues page
Anti-biofilm effects of bacteriocin-like compounds produced by Bacillus subtilis SP1 isolated from Sablan honey
Maryam Khalili Samani1 , Zahra Noormohammadi2 , Mohammad Reza Fazeli3 , Nasrin Samadi4
1- PhD in Microbiology, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Professor of Genetics, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3- Professor of Microbiology, Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4- Associate Professor of Pharmaceutics, Department of Drug and Food Control, Faculty of Pharmacy; and Pharmaceutical Quality Assurance Research Center, Tehran University of Medical Sciences, Tehran, Iran , samadin@tums.ac.ir
Abstract:   (602 Views)
Background: Biofilms are communities of microorganisms which are difficult and complicated to treat with antimicrobial agents. Therefore, there is a need to use new compounds to treat these types of resistant microorganisms. This study was done with the aim of finding an effective compound for inhibition of biofilms of Pseudomonas aeruginosa, Escherichia coli, Streptococcus mutans, and Staphylococcus aureus.
Materials and methods: The effect of bacteriocin-like compounds produced by B. subtilis SP1 isolated from Sablan native honey on the biofilm of four bacterial strains including E. coli, P. aeruginosa, St. mutans and S. aureus was investigated by using 96-well microtiter plate and crystal violet staining.
Results: The percentage of anti-biofilm effect against S. mutans and S. aureus, E. coli and P. aeruginosa at 80 µg/ml of bacteriocin like compounds were about 80, 62, 50, and 15 percent, respectively. The antibiofilm effect was concentration dependent and reduced at lower concentrations of bacteriocin like compounds.
Conclusion: The highest percentage of anti-biofilm effect of bacteriocin like compounds was observed against S. mutans and the lowest percentage of inhibition was against P. aeruginosa.
 
Keywords: بیوفیلم, باسیلوس سوبتی لیس, باکتریوسین
Full-Text [PDF 569 kb]   (279 Downloads)    
Semi-pilot: Experimental | Subject: Microbiology
Received: 2023/11/18 | Accepted: 2024/02/14 | Published: 2024/10/1
References
1. Chen C, Chen Y, Wu P, Chen B. Update on new medicinal applications of gentamicin: Evidence-based review. J Formos Med Assoc 2014;113:72-82. [DOI:10.1016/j.jfma.2013.10.002]
2. Hamzeie M, Nomanpour B, Akhavansepahy A. The effect of bromhexine, gentamicin and imipenem on biofilm of standard bacterial Escherichia coli and Pseudomonas aeruginosa by ELISA method. Med Sci J 2019;29:216-21. [DOI:10.29252/iau.29.3.216]
3. Kafil HS, Mobarez AM. Assessment of biofilm formation by enterococci isolates from urinary tract infections with different virulence profiles. Journal of King Saud University - Science 2015;27:312-7. [DOI:10.1016/j.jksus.2014.12.007]
4. Lu Q, Yu J, Yang X, Wang J, Wang L, Lin Y, et al. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. Int J Antimicrob Agents 2010;36:211-5. [DOI:10.1016/j.ijantimicag.2010.05.007]
5. Bekoe A, Azorliade R, Ablordey A, Addo MG. Microbial Profile and Antibiotic Resistance Pattern of Urine and Biofilm Pathogens Isolated from Catheterized Patients at Komfo Anokye Teaching Hospital, Kumasi, Ghana. J Biosci Med 2021;09:1-13. [DOI:10.4236/jbm.2021.910001]
6. Fennell Y, Ymele-Leki P, Azeezat Adegboye T, Jones KL. Impact of Sulfidation of Silver Nanoparticles on Established P. aeruginosa Biofilm. J Biomater Nanobiotechnol 2017;08:83-95. [DOI:10.4236/jbnb.2017.81006]
7. Abdulrahim U, Kachallah M, Rabiu M, Usman NA, Adeshina GO, Olayinka BO. Molecular Detection of Biofilm-Producing Staphylococcus aureus Isolates from National Orthopaedic Hospital Dala, Kano State, Nigeria. Open J Med Microbiol 2019;09:116-26. [DOI:10.4236/ojmm.2019.93012]
8. Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr Rev Food Sci Food Saf 2012;11:133-47. [DOI:10.1111/j.1541-4337.2011.00183.x]
9. Gholap H, Gholap A, Patil R. ZnO/CdS Nanocomposite: An Anti-Microbial and Anti-Biofilm Agent. Adv Microbiol 2020;10:166-79. [DOI:10.4236/aim.2020.104013]
10. Shayesteh F, Ahmad A, Usup G. In vitro anti-biofilm activity of bacteriocin from a marine bacillus sp.Strain sh10 against proteus mirabilis. Iran J Microb 2020; 12. [DOI:10.18502/ijm.v12i1.2518]
11. Ansari A, Aman A, Siddiqui NN, Iqbal S, Ul Qader SA. Bacteriocin (BAC-IB17): Screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak J Pharm Sci 2012;25:195-201.
12. Gradisteanu Pircalabioru G, Popa LI, Marutescu L, Gheorghe I, Popa M, Czobor Barbu I, et al. Bacteriocins in the era of antibiotic resistance: rising to the challenge. Pharmaceutics 2021;13:1-15. [DOI:10.3390/pharmaceutics13020196]
13. Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, et al. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2022;36:1-40. [DOI:10.1002/jcla.24093]
14. Khalili Samani M, Noormohammadi Z, Fazeli MR, Samadi N. Bacteriocin activity of various iranian honey‐associated bacteria and development of a simple medium for enhanced bacteriocin activity. J Environ Heal Sci Eng 2021;19:427-35. [DOI:10.1007/s40201-021-00615-y]
15. Taheri P, Samadi N, Reza Ehsani M, Reza Khoshay M, Jamalifar H. An evaluation and partial characterization of a bacteriocin produced by lactococcus lactis subsp lactis ST1 isolated from goat milk. Brazilian J Microbiol 2012;43:1452-62. [DOI:10.1590/S1517-83822012000400029]
16. Abriouel H, Franz CMAP, Omar N Ben, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 2011;35:201-32. [DOI:10.1111/j.1574-6976.2010.00244.x]
17. Ahsan A, Mazhar B, Khan MK, Mustafa M, Hammad M, Ali NM. Bacteriocin-mediated inhibition of some common pathogens by wild and mutant Lactobacillus species and in vitro amplification of bacteriocin encoding genes. ADMET DMPK 2022;10:75-87. [DOI:10.5599/admet.1053]
18. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017;41:276-301. [DOI:10.1093/femsre/fux010]
19. Deglovic J, Majtanova N, Majtan J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022;11:2670. [DOI:10.3390/foods11172670]
20. Balázs VL, Nagy-Radványi L, Bencsik-Kerekes E, Koloh R, Szabó D, Kocsis B, et al. Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections. Microorganisms 2023;11:509. [DOI:10.3390/microorganisms11020509]
21. Chopra L, Singh G, Kumar Jena K, Sahoo DK. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep 2015;5:13412. [DOI:10.1038/srep13412]
22. Qiao Z, Zhang L, Wang X, Liu B, Shan Y, Yi Y, et al. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics Antimicrob Proteins 2022;14:1067-1076. [DOI:10.1007/s12602-021-09863-8]
23. Krishnamoorthi R, Srinivash M, Mahalingam PU, Malaikozhundan B, Suganya P, Gurushankar K. Antimicrobial, anti-biofilm, antioxidant and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products-An in vitro and in silico approach. Int J Biol Macromol 2022;220:291-306. [DOI:10.1016/j.ijbiomac.2022.08.087]
24. Chen C, Chen Y, Wu P, Chen B. Update on new medicinal applications of gentamicin: Evidence-based review. J Formos Med Assoc 2014;113:72-82. [DOI:10.1016/j.jfma.2013.10.002]
25. Hamzeie M, Nomanpour B, Akhavansepahy A. The effect of bromhexine, gentamicin and imipenem on biofilm of standard bacterial Escherichia coli and Pseudomonas aeruginosa by ELISA method. Med Sci J 2019;29:216-21. [DOI:10.29252/iau.29.3.216]
26. Kafil HS, Mobarez AM. Assessment of biofilm formation by enterococci isolates from urinary tract infections with different virulence profiles. Journal of King Saud University - Science 2015;27:312-7. [DOI:10.1016/j.jksus.2014.12.007]
27. Lu Q, Yu J, Yang X, Wang J, Wang L, Lin Y, et al. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. Int J Antimicrob Agents 2010;36:211-5. [DOI:10.1016/j.ijantimicag.2010.05.007]
28. Bekoe A, Azorliade R, Ablordey A, Addo MG. Microbial Profile and Antibiotic Resistance Pattern of Urine and Biofilm Pathogens Isolated from Catheterized Patients at Komfo Anokye Teaching Hospital, Kumasi, Ghana. J Biosci Med 2021;09:1-13. [DOI:10.4236/jbm.2021.910001]
29. Fennell Y, Ymele-Leki P, Azeezat Adegboye T, Jones KL. Impact of Sulfidation of Silver Nanoparticles on Established P. aeruginosa Biofilm. J Biomater Nanobiotechnol 2017;08:83-95. [DOI:10.4236/jbnb.2017.81006]
30. Abdulrahim U, Kachallah M, Rabiu M, Usman NA, Adeshina GO, Olayinka BO. Molecular Detection of Biofilm-Producing Staphylococcus aureus Isolates from National Orthopaedic Hospital Dala, Kano State, Nigeria. Open J Med Microbiol 2019;09:116-26. [DOI:10.4236/ojmm.2019.93012]
31. Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr Rev Food Sci Food Saf 2012;11:133-47. [DOI:10.1111/j.1541-4337.2011.00183.x]
32. Gholap H, Gholap A, Patil R. ZnO/CdS Nanocomposite: An Anti-Microbial and Anti-Biofilm Agent. Adv Microbiol 2020;10:166-79. [DOI:10.4236/aim.2020.104013]
33. Shayesteh F, Ahmad A, Usup G. In vitro anti-biofilm activity of bacteriocin from a marine bacillus sp.Strain sh10 against proteus mirabilis. Iran J Microb 2020; 12. [DOI:10.18502/ijm.v12i1.2518]
34. Ansari A, Aman A, Siddiqui NN, Iqbal S, Ul Qader SA. Bacteriocin (BAC-IB17): Screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak J Pharm Sci 2012;25:195-201.
35. Gradisteanu Pircalabioru G, Popa LI, Marutescu L, Gheorghe I, Popa M, Czobor Barbu I, et al. Bacteriocins in the era of antibiotic resistance: rising to the challenge. Pharmaceutics 2021;13:1-15. [DOI:10.3390/pharmaceutics13020196]
36. Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, et al. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2022;36:1-40. [DOI:10.1002/jcla.24093]
37. Khalili Samani M, Noormohammadi Z, Fazeli MR, Samadi N. Bacteriocin activity of various iranian honey‐associated bacteria and development of a simple medium for enhanced bacteriocin activity. J Environ Heal Sci Eng 2021;19:427-35. [DOI:10.1007/s40201-021-00615-y]
38. Taheri P, Samadi N, Reza Ehsani M, Reza Khoshay M, Jamalifar H. An evaluation and partial characterization of a bacteriocin produced by lactococcus lactis subsp lactis ST1 isolated from goat milk. Brazilian J Microbiol 2012;43:1452-62. [DOI:10.1590/S1517-83822012000400029]
39. Abriouel H, Franz CMAP, Omar N Ben, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 2011;35:201-32. [DOI:10.1111/j.1574-6976.2010.00244.x]
40. Ahsan A, Mazhar B, Khan MK, Mustafa M, Hammad M, Ali NM. Bacteriocin-mediated inhibition of some common pathogens by wild and mutant Lactobacillus species and in vitro amplification of bacteriocin encoding genes. ADMET DMPK 2022;10:75-87. [DOI:10.5599/admet.1053]
41. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017;41:276-301. [DOI:10.1093/femsre/fux010]
42. Deglovic J, Majtanova N, Majtan J. Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022;11:2670. [DOI:10.3390/foods11172670]
43. Balázs VL, Nagy-Radványi L, Bencsik-Kerekes E, Koloh R, Szabó D, Kocsis B, et al. Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections. Microorganisms 2023;11:509. [DOI:10.3390/microorganisms11020509]
44. Chopra L, Singh G, Kumar Jena K, Sahoo DK. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep 2015;5:13412. [DOI:10.1038/srep13412]
45. Qiao Z, Zhang L, Wang X, Liu B, Shan Y, Yi Y, et al. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics Antimicrob Proteins 2022;14:1067-1076. [DOI:10.1007/s12602-021-09863-8]
46. Krishnamoorthi R, Srinivash M, Mahalingam PU, Malaikozhundan B, Suganya P, Gurushankar K. Antimicrobial, anti-biofilm, antioxidant and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products-An in vitro and in silico approach. Int J Biol Macromol 2022;220:291-306. [DOI:10.1016/j.ijbiomac.2022.08.087]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalili Samani M, Noormohammadi Z, Fazeli M R, Samadi N. Anti-biofilm effects of bacteriocin-like compounds produced by Bacillus subtilis SP1 isolated from Sablan honey. MEDICAL SCIENCES 2024; 34 (3) :237-244
URL: http://tmuj.iautmu.ac.ir/article-1-2188-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 3 (Fall 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4710