[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 34, Issue 4 (winter 2024) ::
MEDICAL SCIENCES 2024, 34(4): 411-419 Back to browse issues page
Investigating the relationship between diabetes and pulmonary hypertension in patients with chronic respiratory disease referred to Bu-Ali Hospital in Tehran
Basim Nikta1 , , Zahra Shariati2 , Shima MosalaNejad3 , Mehdi Afkar4 , Nazanin Biazar1
1- Internal Medicine Resident, Department of Internal Medicine, Faculty of Medicine, Tehran Medical Sciences, Azad University, Tehran, Iran
2- Internal Medicine Specialist, Department of Internal Medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , shariatisima872@gmail.com
3- Internal Medicine Specialist, Department of Internal Medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
4- Community Medicine Specialist, Department of Community Medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:   (446 Views)
Background: Hyperglycemia affects pathways involved in pulmonary arterial blood pressure. The aim of this study was to investigate the association between diabetes and pulmonary hypertension in patients with chronic respiratory disease referred to Bu Ali Hospital in Tehran.
Materials and methods: In this descriptive-analytical study, 149 cases of patients with chronic respiratory disease in Tehran's Bu Ali Hospital from 1395 to 1401 were examined. Information was extracted from the files and recorded in the data collection form.
Results: The data of 149 patients with mean age of 65 ± 8.6 years were analyzed. The prevalence of pulmonary hypertension and type 2 diabetes were 14.8% and 32.9%, respectively. No relationship between pulmonary hypertension and gender (p=0.34), smoking (p=0.64), type of diabetes medicine (p=0.70), age (p=0.97), FEV1/FVC (17 p = 0.05) and BMI (p = 0.06) was found. There was a significant relationship between pulmonary hypertension and diabetes (p<0.001), duration of diabetes (p=0.03), HbA1c (p<0.001) and FBS (p<0.001).
Conclusion: The prevalence of diabetes in patients with chronic respiratory disease with pulmonary hypertension is higher than in patients without pulmonary hypertension. More studies are needed to evaluate the impact of diabetes and hormones involved in blood sugar control in patients with chronic respiratory diseases with diabetes.
 
Keywords: Diabetes, Pulmonary hypertension, Chronic respiratory disease, Blood sugar, Glycosylated hemoglobin.
Full-Text [PDF 1163 kb]   (161 Downloads)    
Semi-pilot: Survey/Cross Sectional/Descriptive | Subject: Pulmonary
Received: 2023/12/18 | Accepted: 2024/02/7 | Published: 2024/11/30
References
1. Hoeper MM, Humbert M, Souza R, Idrees M, Kawut SM, Sliwa-Hahnle K, et al. A global view of pulmonary hypertension. Lancet Respir Med 2016;4:306-22. [DOI:10.1016/S2213-2600(15)00543-3]
2. Trammell AW, Shah AJ, Phillips LS, Michael Hart C. Mortality in US veterans with pulmonary hypertension: a retrospective analysis of survival by subtype and baseline factors. Pulm Circ 2019;9:2045894019825763. [DOI:10.1177/2045894019825763]
3. Gall H, Felix JF, Schneck FK, Milger K, Sommer N, Voswinckel R, et al. The Giessen Pulmonary Hypertension Registry: survival in pulmonary hypertension subgroups. J Heart Lung Transplant 2017;36:957-67. [DOI:10.1016/j.healun.2017.02.016]
4. Galiè N, Channick RN, Frantz RP, Grünig E, Jing ZC, Moiseeva O, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J 2019;53 [DOI:10.1183/13993003.01889-2018]
5. Kopeć G, Waligóra M, Tyrka A, Jonas K, Pencina MJ, Zdrojewski T, et al. Low-density lipoprotein cholesterol and survival in pulmonary arterial hypertension. Sci Rep 2017;7:41650. [DOI:10.1038/srep41650]
6. Jonas K, Waligóra M, Magoń W, Zdrojewski T, Stokwiszewski J, Płazak W, et al. Prognostic role of traditional cardiovascular risk factors in patients with idiopathic pulmonary arterial hypertension. Arch Med Sci 2019;15:1397-406. [DOI:10.5114/aoms.2018.79242]
7. Heresi GA, Malin SK, Barnes JW, Tian L, Kirwan JP, Dweik RA. Abnormal glucose metabolism and high-energy expenditure in idiopathic pulmonary arterial hypertension. Ann Am Thorac Soc 2017;14:190-9. [DOI:10.1513/AnnalsATS.201608-605OC]
8. Jonas K, Kurzyna M, Mroczek E, Chrzanowski Ł, Mularek-Kubzdela T, Skoczylas I, et al. Impact of diabetes mellitus on disease severity and patient survival in idiopathic pulmonary arterial hypertension: data from the Polish multicentre registry (BNP-PL). Cardiovasc Diabetol 2023;22:177. [DOI:10.1186/s12933-023-01885-6]
9. Hemnes AR, Luther JM, Rhodes CJ, Burgess JP, Carlson J, Fan R, et al. Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight. 2019;4e123611. [DOI:10.1172/jci.insight.123611]
10. Chan SY, Rubin LJ. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. Eur Respir J 2017;26:146 [DOI:10.1183/16000617.0094-2017]
11. Yeligar SM, Kang B-Y, Bijli KM, Kleinhenz JM, Murphy TC, Torres G, et al. PPARγ regulates mitochondrial structure and function and human pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 2018;58:648-57. [DOI:10.1165/rcmb.2016-0293OC]
12. Trammell AW, Hemnes AR, Tseng V, Shah AJ, Phillips LS, Hart CM. Influence of body weight and diabetes mellitus in patients with pulmonary hypertension. AJC. 2020;134:130-7. [DOI:10.1016/j.amjcard.2020.07.062]
13. Vrigkou E, Vassilatou E, Dima E, Langleben D, Kotanidou A, Tzanela M. The Role of Thyroid Disorders, Obesity, Diabetes Mellitus and Estrogen Exposure as Potential Modifiers for Pulmonary Hypertension. J Clin Med 2022;11:921. [DOI:10.3390/jcm11040921]
14. Whitaker ME, Nair V, Sinari S, Dherange PA, Natarajan B, Trutter L, et al. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension. Am J Med 2018;131:702.e7-702.e13. [DOI:10.1016/j.amjmed.2017.12.046]
15. Disoteo OE, Zampetti B, Garascia A, Attanasio R, Cozzi R. Autoimmune Polyendocrine Syndrome Complicated by Pulmonary Hypertension. Endocr Metab Immune Disord Drug Targets 2021;21:561-565. [DOI:10.2174/1871530320666200801033106]
16. Iijima T, Niitani T, Tanaka S, Yanagi K, Jojima T, Suzuki K, et al. Concurrent variant type 3 autoimmune polyglandular syndrome and pulmonary arterial hypertension in a Japanese woman. Endocr J 2018;65:493-498. [DOI:10.1507/endocrj.EJ17-0465]
17. Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res 2008;102:283-94. [DOI:10.1161/CIRCRESAHA.107.164384]
18. Hwang J, Kleinhenz DJ, Lassègue B, Griendling KK, Dikalov S, Hart CM. Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 2005;288:C899-905. [DOI:10.1152/ajpcell.00474.2004]
19. Lu X, Murphy TC, Nanes MS, Hart CM. PPARγ regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-κB. Am J Physiol Lung Cell Mol Physiol 2010;299:L559-L66. [DOI:10.1152/ajplung.00090.2010]
20. Hart CM. The Role of PPARgamma in pulmonary vascular disease. J Investig Med 2008;56:518-21. [DOI:10.2310/JIM.0b013e318165e921]
21. Hansmann G, de Jesus Perez VA, Alastalo T-P, Alvira CM, Guignabert C, Bekker JM, et al. An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Investigat 2008;118:1846-57. [DOI:10.1172/JCI32503]
22. Hansmann G, Zamanian RT. PPARγ activation: a potential treatment for pulmonary hypertension. Sci Translat Med 2009;1:12ps4-ps4. [DOI:10.1126/scitranslmed.3000267]
23. Kang B-Y, Kleinhenz JM, Murphy TC, Hart CM. The PPARγ ligand rosiglitazone attenuates hypoxia-induced endothelin signaling in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2011;30:L881-L91. [DOI:10.1152/ajplung.00195.2011]
24. Morrell NW, Adnot S, Archer SL, Dupuis J, Lloyd Jones P, MacLean MR, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54:S20-S31. [DOI:10.1016/j.jacc.2009.04.018]
25. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13S-24S. [DOI:10.1016/j.jacc.2004.02.029]
26. Lopez-Lopez JG, Moral-Sanz J, Frazziano G, Gomez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, et al. Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 2008;295:L727-32. [DOI:10.1152/ajplung.90354.2008]
27. Pan M, Han Y, Si R, Guo R, Desai A, Makino A. Hypoxia-induced pulmonary hypertension in type 2 diabetic mice. Pulm Circ 2017;7:175-185. [DOI:10.1086/690206]
28. Moral-Sanz J, Lopez-Lopez JG, Menendez C, Moreno E, Barreira B, Morales-Cano D, et al. Different patterns of pulmonary vascular disease induced by type 1 diabetes and moderate hypoxia in rats. Exp Physiol 2012;97:676-86. [DOI:10.1113/expphysiol.2011.062257]
29. Hansmann G, Wagner RA, Schellong S, de Jesus Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-γ activation. Circulation 2007;115:1275-84. [DOI:10.1161/CIRCULATIONAHA.106.663120]
30. Green DE, Murphy TC, Kang BY, Searles CD, Hart CM. PPARγ Ligands Attenuate Hypoxia-Induced Proliferation in Human Pulmonary Artery Smooth Muscle Cells through Modulation of MicroRNA-21. PLoS One 2015 Jul 24;10(7):e0133391. [DOI:10.1371/journal.pone.0133391]
31. Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, et al. Insulin resistance in pulmonary arterial hypertension. Eur Respir J 2009;33:318-24. [DOI:10.1183/09031936.00000508]
32. Pugh ME, Robbins IM, Rice TW, West J, Newman JH, Hemnes AR. Unrecognized glucose intolerance is common in pulmonary arterial hypertension. J Heart Lung Transplant 2011;30:904-11. [DOI:10.1016/j.healun.2011.02.016]
33. Abernethy AD, Stackhouse K, Hart S, Devendra G, Bashore TM, Dweik R, et al. Impact of diabetes in patients with pulmonary hypertension. Pulm Circ 2015;5:117-23. [DOI:10.1086/679705]
34. Grinnan D, Farr G, Fox A, Sweeney L. The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension. J Diabet Res 2016;2016:2481659. [DOI:10.1155/2016/2481659]
35. Makarevich AE, Valevich VE, Pochtavtsev AU. Evaluation of pulmonary hypertension in COPD patients with diabetes. Adv Med Sci 2007;52:265-72.
36. Belly MJ, Tiede H, Morty RE, Schulz R, Voswinckel R, Tanislav C, et al. HbA1c in pulmonary arterial hypertension: a marker of prognostic relevance? J Heart Lung Transplant 2012;31:1109-14. [DOI:10.1016/j.healun.2012.08.014]
37. Benson L, Brittain EL, Pugh ME, Austin ED, Fox K, Wheeler L, Robbins IM, Hemnes AR. Impact of diabetes on survival and right ventricular compensation in pulmonary arterial hypertension. Pulm Circ 2014;4:311-8. [DOI:10.1086/675994]
38. West J, Niswender KD, Johnson JA, Pugh ME, Gleaves L, Fessel JP, Hemnes AR. A potential role for insulin resistance in experimental pulmonary hypertension. Eur Respir J 2013;41:861-71. [DOI:10.1183/09031936.00030312]
39. Mey JT, Hari A, Axelrod CL, Fealy CE, Erickson ML, Kirwan JP, et al. Lipids and ketones dominate metabolism at the expense of glucose control in pulmonary arterial hypertension: a hyperglycaemic clamp and metabolomics study. Eur Respir J 2020;55:1901700. [DOI:10.1183/13993003.01700-2019]
40. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014;115:165-75. [DOI:10.1161/CIRCRESAHA.113.301141]
41. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010;122:920-7. [DOI:10.1161/CIRCULATIONAHA.109.933762]
42. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995:1628-31. [DOI:10.1164/ajrccm.151.5.7735624]
43. Jonas K, Kopeć G. HDL Cholesterol as a Marker of Disease Severity and Prognosis in Patients with Pulmonary Arterial Hypertension. Int J Mol Sci 2019;20:3514. [DOI:10.3390/ijms20143514]
44. Barnes JW, Tian L, Heresi GA, Farver CF, Asosingh K, Comhair SA, et al. O-linked β-N-acetylglucosamine transferase directs cell proliferation in idiopathic pulmonary arterial hypertension. Circulation 2015;131:1260-8. [DOI:10.1161/CIRCULATIONAHA.114.013878]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nikta B, Shariati , Z, MosalaNejad S, Afkar M, Biazar N. Investigating the relationship between diabetes and pulmonary hypertension in patients with chronic respiratory disease referred to Bu-Ali Hospital in Tehran. MEDICAL SCIENCES 2024; 34 (4) :411-419
URL: http://tmuj.iautmu.ac.ir/article-1-2199-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 34, Issue 4 (winter 2024) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.07 seconds with 37 queries by YEKTAWEB 4710