[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 35, Issue 4 (winter 2025) ::
MEDICAL SCIENCES 2025, 35(4): 383-395 Back to browse issues page
Revolutionizing cancer therapy: a scoping review of organoid based personalized immunotherapy
Sahand Hedayati-Omami1 , Negin Alidoost Zoghi2 , Seyedeh Saba Mirian2
1- School of Medicine, TMS, Islamic Azad University, Tehran, Iran , sahand.hedayati2@gmail.com
2- Student Research Committee, School of Pharmacy, TMS, Islamic Azad University, Tehran, Iran
Abstract:   (685 Views)
Abstract

Background: Immunotherapy, an approach using the immune system to combat Cancers, has faced challenges with traditional models that do not fully represent the tumor's immune microenvironment (TIME). The limitations of conventional cancer drug testing on 2D cultures are being addressed by modern techniques that enable the growth of biopsy-derived cancer cells in 3D structures. More representative models, like patient-derived organoids (PDOs), fill this gap. These organoids can mimic the tumor environment, aiding in developing personalized immunotherapy strategies. This scoping review aimed to comprehensively assess the potential of PDOs in developing and personalizing cancer immunotherapy.
Materials and methods: Data were extracted from relevant articles by searching databases. Search terms included "Organoid", "patient-derived organoid", "cancer" and "immunotherapy".
Results: Based on the reviewed articles, PDOs facilitate research in adoptive cellular therapy, including the use of tumor-infiltrating lymphocytes, natural killer cells, and chimeric antigen receptor-T cell therapies. Organoids are presently employed as investigative instruments to assess the efficacy of diverse immunotherapeutic strategies. This utilization could aid in uncovering immune evasion mechanisms and elucidate the intricate intercommunication between tumor cells and immune cells, providing a deeper understanding of cancer immunotherapy.
Conclusion: PDOs accurately replicate tumor characteristics, including histology, genetic diversity, and microenvironments, which are vital for predicting immunotherapy efficacy in patients. They enhance the evaluation of treatment strategies, allowing scientists to test various immunotherapy agents and identify the best therapy for a specific tumor.
 
Keywords: Patient-derived organoids (PDOs), Cancer, Organoid, Immunotherapy
Full-Text [PDF 666 kb]   (221 Downloads)    
Semi-pilot: Review | Subject: Pharmacology
Received: 2024/10/12 | Accepted: 2025/02/16 | Published: 2025/12/1
References
1. Gupta SL, Basu S, Soni V, Jaiswal RK. Immunotherapy: an alternative promising therapeutic approach against cancers. Mol Biol Rep 2022;49:9903-13. [DOI:10.1007/s11033-022-07525-8]
2. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020;20:651-68. [DOI:10.1038/s41577-020-0306-5]
3. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer?. BMC Med 2016;14:1-8. [DOI:10.1186/s12916-016-0623-5]
4. Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer 2019;18:1-4. [DOI:10.1186/s12943-019-1055-6]
5. Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 2018;9:6. [DOI:10.3389/fphar.2018.00006]
6. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018;24:541-50. [DOI:10.1038/s41591-018-0014-x]
7. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423-37. [DOI:10.1038/nm.3394]
8. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures-a comparison of different types of cancer cell cultures. Arch Med Sci 2018;14:910-9.
9. Zhao Y, Zhang B, Ma Y, Zhao F, Chen J, Wang B, et al. Colorectal Cancer Patient‐Derived 2D and 3D Models Efficiently Recapitulate Inter‐and Intratumoral Heterogeneity. Adv Sci 2022;9:2201539. [DOI:10.1002/advs.202201539]
10. Clevers H. Modeling development and disease with organoids. Cell 2016;165:1586-97. [DOI:10.1016/j.cell.2016.05.082]
11. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer 2018;18:407-18. [DOI:10.1038/s41568-018-0007-6]
12. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920-6. [DOI:10.1126/science.aao2774]
13. Abbasian MH, Sobhani N, Sisakht MM, D'Angelo A, Sirico M, Roudi R. Patient-Derived Organoids: A Game-Changer in Personalized Cancer Medicine. Stem Cell Rev Rep 2024:1-5. [DOI:10.1007/s12015-024-10805-4]
14. Grönholm M, Feodoroff M, Antignani G, Martins B, Hamdan F, Cerullo V. Patient-derived organoids for precision cancer immunotherapy. Cancer Res 2021;81:3149-55. [DOI:10.1158/0008-5472.CAN-20-4026]
15. Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J 2019;38:e101654. [DOI:10.15252/embj.2019101654]
16. Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol 2020;41:652-64. [DOI:10.1016/j.it.2020.06.010]
17. Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 2018;174:1586-98. [DOI:10.1016/j.cell.2018.07.009]
18. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell. 2018;175(7):1972-88.e16. [DOI:10.1016/j.cell.2018.11.021]
19. Dong J, Holthaus D, Peters C, Koster S, Ehsani M, Quevedo-Olmos A, et al. γδ T cell-mediated cytotoxicity against patient-derived healthy and cancer cervical organoids. Front Immunol 2023;14:1281646. [DOI:10.3389/fimmu.2023.1281646]
20. Zhou G, Lieshout R, van Tienderen GS, de Ruiter V, van Royen ME, Boor PP, et al. Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells. Br J Cancer 2022;127:649-60. [DOI:10.1038/s41416-022-01839-x]
21. Yu L, Li Z, Mei H, Li W, Chen D, Liu L, et al. Patient‐derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR‐T cells in vitro. Clin Transl Immunol 2021;10:e1248. [DOI:10.1002/cti2.1248]
22. Chakrabarti J, Holokai L, Syu L, Steele NG, Chang J, Wang J, et al. Hedgehog signaling induces PD-L1 expression and tumor cell proliferation in gastric cancer. Oncotarget 2018;9:37439. [DOI:10.18632/oncotarget.26473]
23. Gonzalez-Exposito R, Semiannikova M, Griffiths B, Khan K, Barber LJ, Woolston A, et al. CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J Immunother Cancer 2019;7:1-4. [DOI:10.1186/s40425-019-0575-3]
24. Sun Y, Revach OY, Anderson S, Kessler EA, Wolfe CH, Jenney A, et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 2023;615:158-67. [DOI:10.1038/s41586-023-05704-6]
25. Recaldin T, Steinacher L, Gjeta B, Harter MF, Adam L, Kromer K, et al. Human organoids with an autologous tissue-resident immune compartment. Nature 2024;633:165-73. [DOI:10.1038/s41586-024-07791-5]
26. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 2017;7:462-77. [DOI:10.1158/2159-8290.CD-16-1154]
27. Huang H, Pan Y, Huang J, Zhang C, Liao Y, Du Q, et al. Patient-derived organoids as personalized avatars and a potential immunotherapy model in cervical cancer. iScience 2023;26:108198. [DOI:10.1016/j.isci.2023.108198]
28. Forsythe SD, Sivakumar H, Erali RA, Wajih N, Li W, Shen P, et al. Patient-specific sarcoma organoids for personalized translational research: unification of the operating room with rare cancer research and clinical implications. Ann Surg Oncol 2022;29:7354-67. [DOI:10.1245/s10434-022-12086-y]
29. Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med 2019;11:eaay2574. [DOI:10.1126/scitranslmed.aay2574]
30. Meng Q, Xie S, Gray GK, Dezfulian MH, Gandarilla O, Li W, et al. Empirical identification and validation of tumor-targeting T cell receptors from circulation using autologous pancreatic tumor organoids. J Immunother Cancer 2021;9: e003213. [DOI:10.1136/jitc-2021-003213]
31. Holokai L, Chakrabarti J, Broda T, Chang J, Hawkins JA, Sundaram N, et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection. PLoS Pathog 2019;15:e1007468. [DOI:10.1371/journal.ppat.1007468]
32. Dijkstra KK, Monkhorst K, Schipper LJ, Hartemink KJ, Smit EF, Kaing S, et al. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep 2020;31:107588. [DOI:10.1016/j.celrep.2020.107588]
33. Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, et al. Tumor organoid-T-cell coculture systems. Nat Protoc 2020;15:15-39. [DOI:10.1038/s41596-019-0232-9]
34. Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov 2018;8:1112-29. [DOI:10.1158/2159-8290.CD-18-0349]
35. Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 2020;15:3380-409. [DOI:10.1038/s41596-020-0379-4]
36. Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci 2019;44:33-52. [DOI:10.1016/j.tibs.2018.09.012]
37. Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 2018;24:1363-76. [DOI:10.1016/j.celrep.2018.07.001]
38. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van Den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011;141:1762-72. [DOI:10.1053/j.gastro.2011.07.050]
39. Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science 2019;364:952-5. [DOI:10.1126/science.aaw6985]
40. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017;23:1424-35.. [DOI:10.1038/nm.4438]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hedayati-Omami S, Alidoost Zoghi N, Mirian S S. Revolutionizing cancer therapy: a scoping review of organoid based personalized immunotherapy. MEDICAL SCIENCES 2025; 35 (4) :383-395
URL: http://tmuj.iautmu.ac.ir/article-1-2317-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 35, Issue 4 (winter 2025) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4735