[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 31, Issue 3 (Fall 2021) ::
MEDICAL SCIENCES 2021, 31(3): 307-318 Back to browse issues page
The effect of Ferulic acid on motor-cognitive learning in Trimethyltin- induced hyperactivity model
Habiboolah Khodabandeh1 , Mohammad Amin Edalatmanesh 2
1- PhD Candidate in Cell and Developmental Biology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2- Associate Professor of Physiology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran , amin.edalatmanesh@gmail.com
Abstract:   (913 Views)
Background: Trimethyltin (TMT) is an organotin with selectively damage in the cerebral cortex and hippocampus which leads hyperactivity in prenatal exposure. The aim of this study was the evaluation of Ferulic acid (FER) effect on amelioration of motor and cognitive deficits in prenatal TMT-intoxication rat model.
Materials and methods: In this experimental study, 30 Wistar pregnant rats were randomly divided into 5 groups, including control group, TMT+Saline group and TMT+FER25, TMT+FER50 and TMT+FER100 groups. TMT (9 mg/kg) were intraperitoneally injected to the pregnant rats on embryonic day (ED) 14. Ferulic acid groups were treated by 25, 50 and 100 mg/kg doses of Ferulic acid during ED12 to ED18. Open field test for evaluation of anxiety and locomotor activity, beam walking and grid walking test for assessment of motor learning and Y-maze for evaluation of working memory were used on postnatal day (PND) 30. The data were analyzed by ANOVA and Tukey post hoc.
Results: Increased rates of anxiety- like behaviors, decrease of motor learning and working memory were shown in TMT+Saline group compared to the control. Although, Ferulic acid treated groups were shown a significant amelioration in correct alteration behavior and motor learning with reduction of anxiety- like behaviors (p˂0.05).
Conclusion: TMT prenatal exposure impairs learning and attention in rats and Ferulic acid may reduce cognitive-behavioral deficits.
Keywords: Attention deficit disorder with hyperactivity, Trimethyltin, Ferulic acid, Motor learning, Rat.
Full-Text [PDF 438 kb]   (355 Downloads)    
Semi-pilot: Experimental | Subject: Physiology
Received: 2021/02/16 | Accepted: 2021/04/20 | Published: 2021/09/1
1. Saary M, House R. Preventable exposure to trimethyltin chloride: a case Report. Occup Med 2002; 52:227-30. [DOI:10.1093/occmed/52.4.227]
2. Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, et al. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [DOI:10.1016/j.brainresbull.2016.07.010]
3. Tanguay R, Dong Q, Chen J, Huang C, Zheng L, Simonich M, Bai C. Trimethyltin chloride (TMT) neurobehavioral toxicity in Embryonic zebrafish. Neurotoxicol Teratol 2011; 33: 721-26. [DOI:10.1016/j.ntt.2011.09.003]
4. Tamburella A, Micale V, Mazzola C, Salomone S, Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 2012; 683:148-54. [DOI:10.1016/j.ejphar.2012.02.045]
5. Corvino V, Marchese E, Michetti F, Geloso MC. Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2013 ;38:240-53. [DOI:10.1007/s11064-012-0932-9]
6. Ptacek R, Weissenberger S, Braaten E, Klicperova-Baker M, Goetz M, Raboch J, et al. Clinical Implications of the Perception of Time in Attention Deficit Hyperactivity Disorder (ADHD): A Review. Med Sci Monit 2019; 25:3918-3924. [DOI:10.12659/MSM.914225]
7. Tanguay R, Dong Q, Chen J, Huang C, Zheng L, Simonich M, et al. Trimethyltin chloride (TMT) neurobehavioral toxicity in Embryonic zebrafish. Neurotoxicol Teratol 2011; 33: 721-26. [DOI:10.1016/j.ntt.2011.09.003]
8. Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. Handb Clin Neurol 2018; 155:61-72. [DOI:10.1016/B978-0-444-64189-2.00004-4]
9. Gunasekar P, Li L, Prabahkaran K, Eybl V, Borowitz J, Isom G. Mechanisms of the apoptptic and necrotic actions of trimethyltin in cerebellar granule cells. Toxicol Sci 2001; 64: 83-9. [DOI:10.1093/toxsci/64.1.83]
10. Shams-Alam S, Edalatmanesh MA. The Effete of Lithium Chloride on the Granular Cell Density in Cerebellar Folia V and VI in a Trimethyltin Intoxication Model. Shefaye Khatam 2015; 3:41-48. [In Persian] [DOI:10.18869/acadpub.shefa.3.2.41]
11. Kraft AD, McPherson CA, Harry GJ. Association between Microglia, Inflammatory Factors, and Complement with Loss of Hippocampal Mossy Fiber Synapses Induced by Trimethyltin. Neurotox Res 2016; 30:53-66. [DOI:10.1007/s12640-016-9606-8]
12. Fornai F, Trabucco A, Pietro P, Nori SL. Fulceri F, Fumagalli L, et al. Methylated tin toxicity a reappraisal using rodents modelas. Arch Ital Biol 2009;147:141-53.
13. Moghadas M, Essa MM, Ba-Omar T, Al-Shehi A, Qoronfleh MW, Eltayeb EA, et al. Antioxidant therapies in attention deficit hyperactivity disorder. Front Biosci (Landmark Ed) 2019; 24:313-33. [DOI:10.2741/4720]
14. El-Bassossy H, Badawy D, Neamatallah T, Fahmy A. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation. Chem Biol Interact 2016; 254:191-7. [DOI:10.1016/j.cbi.2016.06.013]
15. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol Physiol 2018; 31:332-36. [DOI:10.1159/000491755]
16. Catino S, Paciello F, Miceli F, Rolesi R, Troiani D, Calabrese V, et al. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y. Front Pharmacol 2016; 6:305. [DOI:10.3389/fphar.2015.00305]
17. Edalatmanesh MA, Yazdani M, Davoodi A, Rafiei S. Anxiolytic Effect of Lithium Chloride in Model of PTZ-Induced Seizure. Horizon Med Sci 2018; 24:79-87. [In Persian]
18. Bagha N, Edalatmanesh M. Effectiveness of Erythropoietin on Working Memory, Passive Avoidance Learning and Anxiety- Like Behaviors in Prenatal Food Restriction Model. Report of Health Care 2018; 4: 36-43.
19. Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S. Neuroprotective effects of mesenchymal stem cell transplantation in animal model of cerebellar degeneration. Neurol Res 2011; 33:913-20. [DOI:10.1179/1743132811Y.0000000036]
20. Edalatmanesh MA, Nikfarjam H, Moghadas M, Haddad-Mashadrizeh A, Robati R, Hashemzadeh MR. Histopathological and behavioral assessment of toxin-produced cerebellar lesion: a potent model for cell transplantation studies in the cerebellum. Cell J 2014; 16:325-34.
21. Yoshikawa Y, Ago T, Kuroda J, Wakisaka Y, Tachibana M, Komori M, et al. Nox4 Promotes Neural Stem/Precursor Cell Proliferation and Neurogenesis in the Hippocampus and Restores Memory Function Following Trimethyltin-Induced Injury. Neuroscience 2019; 398:193-205. [DOI:10.1016/j.neuroscience.2018.11.046]
22. Yuliani S, Widyarini S, Mustofa, Partadiredja G. Turmeric extract inhibits apoptosis of hippocampal neurons of trimethyltin-exposed rats. Bratisl Lek Listy 2017; 118:142-8. [DOI:10.4149/BLL_2017_028]
23. Cheng H, Sun G, Li M, Yin M, Chen H. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: a resting-state fMRI study on military pilots. Biosci Trends 2019;13:430-40. [DOI:10.5582/bst.2019.01190]
24. Marchese E, Corvino V, Di Maria V, Furno A, Giannetti S, Cesari E, et al. The Neuroprotective Effects of 17β-Estradiol Pretreatment in a Model of Neonatal Hippocampal Injury Induced by Trimethyltin. Front Cell Neurosci 2018; 12:385. [DOI:10.3389/fncel.2018.00385]
25. Kim J, Yang M, Kim SH, Kim JC, Wang H, Shin T, et al. Possible role of the glycogen synthase kinase-3 signaling pathway in trimethyltin-induced hippocampal neurodegeneration in mice. PLoS One 2013; 8: e70356. [DOI:10.1371/journal.pone.0070356]
26. Shin EJ, Nam Y, Tu TH, Lim YK, Wie MB, Kim DJ, et al. Protein kinase Cδ mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism. Arch Toxicol 2016; 90:937-53. [DOI:10.1007/s00204-015-1516-7]
27. Verlaet AAJ, Maasakkers CM, Hermans N, Savelkoul HFJ. Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients 2018;10:405. [DOI:10.3390/nu10040405]
28. Edalatmanesh MA, Shahsavan S, Rafiei S, Khodabandeh H. The Effect of Gallic Acid on Depression Symptoms, Oxidative Stress Markers and Inflammatory Cytokines in Rats' Hippocampus after TMT Intoxication: An Experimental Study. J Rafsanjan Univ Med Sci 2018; 17:815-28. [In Persian]
29. Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci 2017; 179:9-14. [DOI:10.1016/j.lfs.2016.08.011]
30. Wang H, Sun X, Zhang N, Ji Z, Ma Z, Fu Q, et al. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol Behav 2017; 182:93-100. [DOI:10.1016/j.physbeh.2017.10.001]
31. Kim MJ, Choi SJ, Lim ST, Kim HK, Heo HJ, Kim EK, et al. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci Biotechnol Biochem 2007; 71:1063-8. [DOI:10.1271/bbb.60564]
32. Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit hyperactivity disorder. Lancet 2020; 395:450-62. [DOI:10.1016/S0140-6736(19)33004-1]
33. Edalatmanesh M A, Sheikholeslami M, Rafiei S. Evaluation of brain-derived neurotrophic factor expression and spatial memory after valproic acid administration in animal model of hippocampal degeneration. Feyz 2018; 22: 283-91. [In Persian]
34. Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, et al. Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J Neurosci 2018; 38:1959-72. [DOI:10.1523/JNEUROSCI.1931-17.2018]
35. Lorigooini Z, Nouri A, Mottaghinia F, Balali-Dehkordi S, Bijad E, Dehkordi SH, et al. Ferulic acid through mitigation of NMDA receptor pathway exerts anxiolytic-like effect in mouse model of maternal separation stress. J Basic Clin Physiol Pharmacol 2020 May 6. [DOI:10.1016/j.heliyon.2020.e04833]
36. Stoodley CJ. The Cerebellum and Neurodevelopmental Disorders. Cerebellum 2016; 15:34-37. [DOI:10.1007/s12311-015-0715-3]
37. Mundy WR, Freudenrich TM. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases. Neurotoxicology 2006; 27:71-81. [DOI:10.1016/j.neuro.2005.07.007]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khodabandeh H, Edalatmanesh M A. The effect of Ferulic acid on motor-cognitive learning in Trimethyltin- induced hyperactivity model. MEDICAL SCIENCES. 2021; 31 (3) :307-318
URL: http://tmuj.iautmu.ac.ir/article-1-1857-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 3 (Fall 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4410