[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای داوران::
ثبت نام ::
اشتراک::
اطلاعات نمایه::
برای نویسندگان::
فرآیند چاپ::
پست الکترونیک::
تماس با ما::
تسهیلات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 35، شماره 4 - ( زمستان 1404 ) ::
جلد 35 شماره 4 صفحات 411-406 برگشت به فهرست نسخه ها
بررسی مشتقات دی‌متیل فومارات به عنوان دارو در برابر تنش‌های اکسایشی با استفاده از داکینگ مولکولی با پروتئین KEAP1
سعید رضا امامیان1 ، سید جواد حسینی2 ، صفا علی عسگری2
1- دانشیار گروه شیمی و بیوشیمی، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران ، saeedreza_em@yahoo.com
2- استادیار گروه شیمی و بیوشیمی، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
چکیده:   (310 مشاهده)
چکیده:
سابقه و هدف
: تنش اکسایشی نقطۀ شروع بسیاری از بیماری‌های مزمن از جمله دیابت، سرطان و عامل بیماری­های آلزایمر، پارکینسون و ام اس است. مسیر KEAP1-NRF2 دفاع القایی اصلی در برابر تنش­های اکسایشی و الکتروندوستی است. وجود سیستم KEAP1-NRF2 در مسیرهای پیام سلولی و سوخت­وسازی متعدد، فعالسازی NRF2 را به عنوان یک عامل تنظیم کنندۀ حیاتی در مواجهه با بسیاری از فنوتیپهای بیماری مطرح می­کند. در این تحقیق داکینگ مولکولی DMF و سه مشتق DMNBF،  DMCBFو DMBBF با پروتئین KEAP1 برای فعالسازی NRF2 با هدف مقابله با تنش­های اکسایشی و الکتروندوستی مورد بررسی قرار می­گیرد.

روش بررسی: مقدار انرژی میل ترکیبی برای برهم­کنش DMF و سه مشتق DMNBF،  DMCBFو DMBBF با پروتئینKEAP1 در سه ناحیۀ فعال پروتئین با استفاده از روش داکینگ مولکولی محاسبه و نوع برهم­کنش­ها مشخص شد. 
یافته­ها: نتایج نشان داد DMNBF با انرژی میل ترکیبی 9/5، 7/5 و 7/3 کیلوکالری بر مول در هر سه ناحیۀ فعال، مؤثرتر از DMF و سایر مشتقات به پروتئین KEAP1 متصل می­شود.
نتیجه­گیری: از آنجایی که DMF به عنوان یک داروی تأیید شده برای درمان پسوریازیس و ام اس تجویز می­شود و مسیر عمل آن      برهم­کنش با KEAP1 و فعالسازی NRF2 در جهت مقابله با تنش اکسایشی است، به طور مشابه مولکول DMNBF ممکن است بتواند در دوزهای کمتر و عوارض جانبی کمتر برای درمان پسوریازیس و ام اس یا برای فعالسازی NRF2 در مواجهه با بیماری­هایی که به نوعی با سیستم KEAP1-NRF2  مرتبط هستند مورد مطالعه قرار گیرد.
 
واژه‌های کلیدی: داکینگ مولکولی، تنش اکسایشی، گونه‌های اکسیژن واکنش‌پذیر، مسیر KEAP1-NRF2، مشتقات دی‌متیل فومارات.
متن کامل [PDF 1379 kb]   (124 دریافت)    
نيمه آزمايشي : بنيادي | موضوع مقاله: زيست شناسي مولكولي
دریافت: 1403/8/29 | پذیرش: 1403/11/2 | انتشار: 1404/9/10
فهرست منابع
1. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 2017; 9: 41-6. [DOI:10.1007/s12551-016-0244-4]
2. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86: 715-8. [DOI:10.1146/annurev-biochem-061516-045037]
3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-20. [DOI:10.1038/414813a]
4. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931-7. [DOI:10.1038/nrd4002]
5. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004; 3: 205-14. [DOI:10.1038/nrd1330]
6. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236: 313-22. [DOI:10.1006/bbrc.1997.6943]
7. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 2004; 101: 2040-45. [DOI:10.1073/pnas.0307301101]
8. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 2013;100: 30-47. [DOI:10.1016/j.pneurobio.2012.09.003]
9. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 1994; 91: 9926-30. [DOI:10.1073/pnas.91.21.9926]
10. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004; 24:10941-53. [DOI:10.1128/MCB.24.24.10941-10953.2004]
11. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004; 24:8477-86. [DOI:10.1128/MCB.24.19.8477-8486.2004]
12. Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, et al. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 2013; 288:7803-14. [DOI:10.1074/jbc.M112.437996]
13. Li X, Zhang D, Hannink M, Beamer LJ. Crystal structure of the Kelch domain of human Keap1. J Biol Chem 2004; 279:54750-8. [DOI:10.1074/jbc.M410073200]
14. Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PloS One 2014; 9:e98896. [DOI:10.1371/journal.pone.0098896]
15. Xue P, Hou Y, Chen Y, Yang B, Fu J, Zheng H, et al. Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes 2013; 62:845-54. [DOI:10.2337/db12-0584]
16. Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 2003;23:8137-51. [DOI:10.1128/MCB.23.22.8137-8151.2003]
17. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 2002; 99:11908-13. [DOI:10.1073/pnas.172398899]
18. Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, Freeman ML. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chemi Res Toxicol 2008; 21:705-10. [DOI:10.1021/tx700302s]
19. Eggler AL, Small E, Hannink M, Mesecar AD. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Biochem J 2009; 422:171-80. [DOI:10.1042/BJ20090471]
20. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134:678-92. [DOI:10.1093/brain/awq386]
21. Takaya K, Suzuki T, Motohashi H, Onodera K, Satomi S, Kensler TW, et al. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic Biol Med 2012; 53:817-27. [DOI:10.1016/j.freeradbiomed.2012.06.023]
22. Schmidt TJ, Ak M, Mrowietz U. Reactivity of dimethyl fumarate and methylhydrogen fumarate towards glutathione and N-acetyl-L-cysteine-preparation of S-substituted thiosuccinic acid esters. Bioorg Med Chem 2007; 15:333-42. [DOI:10.1016/j.bmc.2006.09.053]
23. Chin MP, Wrolstad D, Bakris GL, Chertow GM, de Zeeuw D, Goldsberry A, et al. Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail 2014; 20:953-8. [DOI:10.1016/j.cardfail.2014.10.001]
24. Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 2018;98:1169-203. [DOI:10.1152/physrev.00023.2017]
25. Van Laecke ST, Van Biesen W, Vanholder R. The paradox of bardoxolone methyl: a call for every witness on the stand? Diabetes Obes Metab 2015;17:9-14. [DOI:10.1111/dom.12356]
26. Linker RA, Gold R. Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep 2013; 13:1-7. [DOI:10.1007/s11910-013-0394-8]
27. RECOVERY Collaborative Group; Horby PW, Peto L, Staplin N, Campbell M, Pessoa-Amorim G, Mafham M, et al. Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Nat Commun 2024;15:924. [DOI:10.1038/s41467-023-43644-x]
28. Brennan MS, Matos MF, Li B, Hronowski X, Gao B, Juhasz P, Rhodes KJ, Scannevin RH. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PloS One 2015; 10: e0120254. [DOI:10.1371/journal.pone.0120254]
29. Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 2006; 21:689-700. [DOI:10.1016/j.molcel.2006.01.013]
30. Tong KI, Kobayashi A, Katsuoka F & Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 2006; 387: 1311-20. [DOI:10.1515/BC.2006.164]
31. Linker RA, Haghikia A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther Adv Chronic Dis 2016; 7:198-207. [DOI:10.1177/2040622316653307]
32. Longbrake EE, Cross AH. Dimethyl fumarate associated lymphopenia in clinical practice. Mult Scler 2015; 21:796-7. [DOI:10.1177/1352458514559299]
33. Unni S, Deshmukh P, Krishnappa G, Kommu P, Padmanabhan B. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1. FEBS J 2021; 2881599-613. [DOI:10.1111/febs.15485]
34. Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 2004; 36:1208-13. [DOI:10.1016/j.freeradbiomed.2004.02.075]
35. Davies TG, Wixted WE, Coyle JE, Griffiths-Jones C, Hearn K, McMenamin R, et al. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) protein-protein interaction with high cell potency identified by fragment-based discovery. J Med Chem 2016; 59:3991-4006. [DOI:10.1021/acs.jmedchem.6b00228]
36. Hosseini SJ, Ali-asgari S. Stereoselective and triphenylphosphine-catalyzed synthesis of 2,2'- azanediyldifumarate and 2-benzoylfumarate: Preparation of the Tekfidra drug derivatives. J Appl Res Chem 2022; 17:91-8.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emamian S, Hosseini J, Ali-Asgari S. Investigating dimethyl fumarate derivatives as drugs against oxidative stress using the molecular docking with KEAP1 protein. MEDICAL SCIENCES 2025; 35 (4) :406-411
URL: http://tmuj.iautmu.ac.ir/article-1-2321-fa.html

امامیان سعید رضا، حسینی سید جواد، علی عسگری صفا. بررسی مشتقات دی‌متیل فومارات به عنوان دارو در برابر تنش‌های اکسایشی با استفاده از داکینگ مولکولی با پروتئین KEAP1. فصلنامه علوم پزشکی دانشگاه آزاد اسلامی تهران. 1404; 35 (4) :406-411

URL: http://tmuj.iautmu.ac.ir/article-1-2321-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 35، شماره 4 - ( زمستان 1404 ) برگشت به فهرست نسخه ها
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.06 seconds with 37 queries by YEKTAWEB 4732