[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 30, Issue 2 (summer 2020) ::
MEDICAL SCIENCES 2020, 30(2): 107-119 Back to browse issues page
The effect of agonist and antagonist of Nociceptine/Orphanin FQ receptor on seizure and cognitive dysfunction in experimental model of temporal lobe epilepsy in male rat
Nida Jamali-Raeufy 1, Motahareh Zeinivand2 , Mina Goudarzi3 , Sobhan Haghani3
1- Department of physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , jamali.n@iums.ac.ir
2- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
3- MSc, Department of physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (3985 Views)
Background: Temporal lobe epilepsy is a chronic neurological disorder characterized by spontaneous seizures, learning and memory deficiency, loss of neurons, mossy fiber sprouting and tissue apoptosis. This study was to investigate the effect of NOP receptor agonist (MCOPPB) and antagonist (SB612111) on seizure and cognitive dysfunction and histological studies in experimental model of temporal lobe epilepsy in male rat.
Materials and methods: in this study, 50 male rats were divided into six groups, including sham, epileptic, valperoic treated epileptic, NOP receptor agonist and antagonist treated epileptic. Finally, seizure behavior, short-term (Y-maze) and long-term (shuttle box) memory, GFAP value and also histologic finding (Nissel, Tim and Apoptosis staining) were evaluated.
Results: Kinic acid induced seizures associated with significant seizure behavior, impairment of learning and memory and tissue damage. Pretreated epileptic rats with NOP receptor agonist decreased seizure attacks, but did not improve memory. Administration of NOP antagonist was not effective on the seizure behavior, but contribute to improve the memory and learning abilities following treatment. Also, administration of NOP agonist and antagonist increased neuron count, reduced increased sprouting of mossy fibers, cell death and the activity of astrocytes in the hippocampus.
Conclusion: pre-treatment of epileptic rets with NOP receptor agonist and antagonist reduced seizures attacks and improved short-term spatial memory and tissue damage in rats.
Keywords: Temporal lobe epilepsy, Kainic acid, NOP agonist, NOP antagonist, Learning and memory, Histological studies.
Full-Text [PDF 544 kb]   (1593 Downloads)    
Semi-pilot: Experimental | Subject: Physiology
Received: 2019/11/3 | Accepted: 2020/01/4 | Published: 2020/06/28
References
1. 1. Prince DA, Connors BW. Mechanisms of interictal epileptogenesis. Adv Neurol 1986;44:275-99.
2. Loscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013;12:757-76. [DOI:10.1038/nrd4126]
3. Jefferys JG. Advances in understanding basic mechanisms of epilepsy and seizures. Seizure 2010;19:638-46. [DOI:10.1016/j.seizure.2010.10.026]
4. Katzung B, Trevor A, Editors. Basic and clinical pharmacology. 13th ed. USA: McGraw-Hill Education; 2014. P.1216.
5. Mazarati AM, Liu H, Soomets U, Sankar R, Shin D, Katsumori H, et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 1998;18:10070-7. [DOI:10.1523/JNEUROSCI.18-23-10070.1998]
6. de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989;495:387-95. [DOI:10.1016/0006-8993(89)90234-5]
7. Liu H, Mazarati AM, Katsumori H, Sankar R, Wasterlain CG. Substance P is expressed in hippocampal principal neurons during status epilepticus and plays a critical role in the maintenance of status epilepticus. Proc Natl Acad Sci U S A 1999;96:5286-91. [DOI:10.1073/pnas.96.9.5286]
8. Marrosu F, Mereu G, Fratta W, Carcangiu P, Camarri F, Gessa GL. Different epileptogenic activities of murine and ovine corticotropin-releasing factor. Brain Res 1987;408:394-8. [DOI:10.1016/0006-8993(87)90413-6]
9. Tallent MK, Siggins GR. Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus. J Nneurophysiol 1997;78:3008-18. [DOI:10.1152/jn.1997.78.6.3008]
10. Bausch SB, Esteb TM, Terman GW, Chavkin C. Administered and endogenously released kappa opioids decrease pilocarpine-induced seizures and seizure-induced histopathology. J Pharmacol Exp Ther 1998;284:1147-55.
11. Civelli O, Zhou Q, Editors. Orphan G protein-coupled receptors and novel neuropeptides. 1st ed. Switzerland: Springers; 2008. [DOI:10.1007/978-3-540-78351-0]
12. Naydenova E, Todorov P. Nociceptin/orphanin (N/OFQ) analogues: Chemistry and biology. J Univ Chem Technol Metallurgy 2011; 2011:334.
13. Donica CL, Awwad HO, Thakker DR, Standifer KM. Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol 2013;83:907-18. [DOI:10.1124/mol.112.084632]
14. Gavioli EC, Duarte FS, Guerrini R, Calo G, Rae GA, TC MDL. GABA(A) signalling is involved in N/OFQ anxiolytic-like effects but not in nocistatin anxiogenic-like action as evaluated in the mouse elevated plus maze. Peptides 2008;29:1404-12. [DOI:10.1016/j.peptides.2008.04.004]
15. Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, et al. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol therap 2014;141:283-99. [DOI:10.1016/j.pharmthera.2013.10.011]
16. Tajalli S, Jonaidi H, Abbasnejad M, Denbow DM. Interaction between nociceptin/orphanin FQ (N/OFQ) and GABA in response to feeding. Physiol Behav 2006;89:410-3. [DOI:10.1016/j.physbeh.2006.07.009]
17. Aparicio LC, Candeletti S, Binaschi A, Mazzuferi M, Mantovani S, Di Benedetto M, et al. Kainate seizures increase nociceptin/orphanin FQ release in the rat hippocampus and thalamus: a microdialysis study. J Neurochem 2004;91:30-7. [DOI:10.1111/j.1471-4159.2004.02633.x]
18. Bregola G, Zucchini S, Rodi D, Binaschi A, D'Addario C, Landuzzi D, et al. Involvement of the neuropeptide nociceptin/orphanin FQ in kainate seizures. J Neurosci 2002;22:10030-8. [DOI:10.1523/JNEUROSCI.22-22-10030.2002]
19. Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D. Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 2000;129:1261-83. [DOI:10.1038/sj.bjp.0703219]
20. Feng Y, Chao DM, Li WM, Cao YX, Wang YQ, Wu GC. Inhibition of nociceptin/orphanin FQ on penicillin-induced seizures in rats. Brain Res 2004;1020:214-9. [DOI:10.1016/j.brainres.2004.05.116]
21. Rubaj A, Zgodzinski W, Gustaw K, Sieklucka-Dziuba M. Nociceptin, OP4 receptor ligand in different models of experimental epilepsy. Peptides 2002;23:497-505. [DOI:10.1016/S0196-9781(01)00636-2]
22. Binaschi A, Zucchini S, Bregola G, Rodi D, Mazzuferi M, Reinscheid RK, et al. Delayed epileptogenesis in nociceptin/orphanin FQ-deficient mice. Neuroreport 2003;14:825-7. [DOI:10.1097/00001756-200305060-00009]
23. Baluchnejadmojarad T, Roghani M. Coenzyme q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat. J Mol Neurosci 2013;49:194-201. [DOI:10.1007/s12031-012-9886-2]
24. Shen H, Liu L, Huo Z, Lin Z. Hippocampal stem cell grafting-mediated recovery of injured hippocampus in the rat model of temporal lobe epilepsy. Int J Neurosci 2010;120:647-54. [DOI:10.3109/00207454.2010.509526]
25. Liao ZJ, Liang RS, Shi SS, Wang CH, Yang WZ. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice. Exp Ther Med 2016;12:1405-11. [DOI:10.3892/etm.2016.3461]
26. Hu K, Li SY, Xiao B, Bi FF, Lu XQ, Wu XM. Protective effects of quercetin against status epilepticus induced hippocampal neuronal injury in rats: involvement of X-linked inhibitor of apoptosis protein. Acta Neurol Belg 2011;111:205-12.
27. Sakoori K, Murphy NP. Reduced degeneration of dopaminergic terminals and accentuated astrocyte activation by high dose methamphetamine administration in nociceptin receptor knock out mice. Neurosci Lett 2010;469:309-13. [DOI:10.1016/j.neulet.2009.12.014]
28. Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Gonzalez-Castaneda R, Garcia-Estrada J, Gonzalez-Perez O, Luquin S. Responses of glial cells to stress and glucocorticoids. Curr Immunol Rev 2010;6:195-204. [DOI:10.2174/157339510791823790]
29. Leggett JD, Harbuz MS, Jessop DS, Fulford AJ. The nociceptin receptor antagonist [Nphe1,Arg14,Lys15]nociceptin/orphanin FQ-NH2 blocks the stimulatory effects of nociceptin/orphanin FQ on the HPA axis in rats. Neuroscience 2006;141:2051-7. [DOI:10.1016/j.neuroscience.2006.05.036]
30. Guo H, Zhao L, Zhang BH, Li J, Chen X. Apoptosis of K562 cells induced by nociceptin/orphanin FQ. Zhongguo shi yan xue ye xue za zhi. 2006;14:1116-9. [In Chinese]
31. Bregola G, Candeletti S, Romualdi P, Simonato M. Limbic seizures increase pronociceptin mRNA levels in the thalamic reticular nucleus. Neuroreport 1999;10:541-6. [DOI:10.1097/00001756-199902250-00018]
32. Tallent MK, Madamba SG, Siggins GR. Nociceptin reduces epileptiform events in CA3 hippocampus via presynaptic and postsynaptic mechanisms. J Neurosci 2001;21:6940-8. [DOI:10.1523/JNEUROSCI.21-17-06940.2001]
33. Armagan G, Bojnik E, Turunc E, Kanit L, Gunduz Cinar O, Benyhe S, et al. Kainic acid-induced changes in the opioid/nociceptin system and the stress/toxicity pathways in the rat hippocampus. Neurochem Int 2012;60:555-64. [DOI:10.1016/j.neuint.2012.02.015]
34. Racine RJ. Modification of seizure activity by electrical stimulation. I. After-discharge threshold. Clin Neurophysiol 1972;32:269-79. [DOI:10.1016/0013-4694(72)90176-9]
35. Nicol B, Lambert DG, Rowbotham DJ, Okuda-Ashitaka E, Ito S, Smart D, et al. Nocistatin reverses nociceptin inhibition of glutamate release from rat brain slices. Eur J Pharmacol 1998;356::R1-3. [DOI:10.1016/S0014-2999(98)00545-7]
36. Jalili C, Salahshoor MR, Moradi S, Pourmotabbed A, Motaghi M. The therapeutic effect of the aqueous extract of boswellia serrata on the learning deficit in kindled rats. Int J Prev Med 2014;5:563-8.
37. Chauviere L, Rafrafi N, Thinus-Blanc C, Bartolomei F, Esclapez M, Bernard C. Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J Neurosci 2009;29:5402-10. [DOI:10.1523/JNEUROSCI.4699-08.2009]
38. Miltiadous P, Stamatakis A, Koutsoudaki PN, Tiniakos DG, Stylianopoulou F. IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp Nneurol 2011;231:223-35. [DOI:10.1016/j.expneurol.2011.06.014]
39. Duarte JM, Agostinho PM, Carvalho RA, Cunha RA. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PloS One 2012;7:e21899. [DOI:10.1371/journal.pone.0021899]
40. Tourandokht Baluchnejadmojarad, Roghani M, Kamran M, Karimi N. The Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy. Basic Clin Neurosci 2012; 3: 58-66
41. Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 2008;49:33-41. [DOI:10.1111/j.1528-1167.2008.01491.x]
42. Mansouri Z, Sabetkasaei M, Moradi F, Masoudnia F, Ataie A. Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. J Mol Neurosci 2012;47:234-42. [DOI:10.1007/s12031-012-9727-3]
43. Roozendaal B, Lengvilas R, McGaugh JL, Civelli O, Reinscheid RK. Orphanin FQ/nociceptin interacts with the basolateral amygdala noradrenergic system in memory consolidation. Learn Mem 2007;14:29-35. [DOI:10.1101/lm.403607]
44. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 1997;9:194-7. [DOI:10.1111/j.1460-9568.1997.tb01367.x]
45. Palotai M, Adamik A, Telegdy G. Involvement of neurotransmitters in the action of the nociceptin/orphanin FQ peptide-receptor system on passive avoidance learning in rats. Neurochem Res 2014;39:1477-83. [DOI:10.1007/s11064-014-1337-8]
46. Mallimo EM, Kusnecov AW. The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 2013;7:173. [DOI:10.3389/fncel.2013.00173]
47. Sandin J, Ogren SO, Terenius L. Nociceptin/orphanin FQ modulates spatial learning via ORL-1 receptors in the dorsal hippocampus of the rat. Brain Res 2004;997:222-33. [DOI:10.1016/j.brainres.2003.11.008]
48. Nabeshima T, Noda Y, Mamiya T. The role of nociceptin in cognition. Brain Res 1999;848:167-73. [DOI:10.1016/S0006-8993(99)01906-X]
49. Hiramatsu M, Inoue K. Effects of nocistatin on nociceptin-induced impairment of learning and memory in mice. Eur J Pharmacol 1999;367:151-5. [DOI:10.1016/S0014-2999(99)00003-5]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jamali-Raeufy N, Zeinivand M, Goudarzi M, Haghani S. The effect of agonist and antagonist of Nociceptine/Orphanin FQ receptor on seizure and cognitive dysfunction in experimental model of temporal lobe epilepsy in male rat. MEDICAL SCIENCES 2020; 30 (2) :107-119
URL: http://tmuj.iautmu.ac.ir/article-1-1768-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 2 (summer 2020) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660