[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 30, Issue 3 (Fall 2020) ::
MEDICAL SCIENCES 2020, 30(3): 227-236 Back to browse issues page
Separation of ibuprofen drugs enantiomers by using chiral carbon nanotube with molecular dynamics simulation
Melahatsadat Rasoolidanesh1 , Masoud Darvish Ganji 2
1- Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran , Ganji_md@yahoo.com
Abstract:   (3249 Views)
Background: The separation of drug enantiomers in the pharmaceutical industry is of great importance since most organic compounds are chiral. The main purpose of this study was to calculate the binding energy of ibuprofen isomers interacting with the CNT, according to various adsorption configurations. Moreover, we have evaluated the performance of (16.4) chiral carbon nanotube for separation of ibuprofen enantiomers. Also, the interaction between R- and S-isomers of ibuprofen with the outer surface and internal sidewall of chiral CNT was investigated.
Materials and methods: The performance of (16.4) carbon nanotube has been evaluated for separation of ibuprofen enantiomers using molecular dynamics simulation. Quantum computations were also utilized, optimizing the molecular structure of the drug and the amount of charge of each atom in the ibuprofen enantiomers.
Results: The energy difference between the left and right-handed enantiomers inside the (16.4) carbon nanotube was equal to 0.5 eV (11.5 kcal/mol), while the adsorbed enantiomers on the outer surface of nanotube did not differ in energy.
Conclusion: The results of this study showed that there was a sufficient difference between the adsorption energy of the enantiomers adsorbed inside the (16.4) chiral carbon nanotube; therefore we can anticipate this nanotube will work effectively in the process of separating drug enantiomers.
Keywords: Ibuprofen, Carbon nanotube, Chirality, Enantioseparation, Molecular dynamics simulation
Full-Text [PDF 691 kb]   (3643 Downloads)    
Semi-pilot: Experimental | Subject: Chemistry
Received: 2019/04/13 | Accepted: 2019/07/2 | Published: 2020/09/20
References
1. 1. Von Heeren F, Thormann W. Capillary electrophoresis in clinical and forensic analysis. Electrophoresis 1997;18:2415-26. [DOI:10.1002/elps.1150181232]
2. Naylor S, Benson LM, Tomlinson AJ. Application of capillary electrophoresis and related techniques to drug metabolism studies. J Chromatogr A 1996;735:415-38. [DOI:10.1016/0021-9673(96)00068-4]
3. Soleymani E, Alinezhad H, Ganji MD, Tajbakhsh M. Enantioseparation performance of CNTs as chiral selectors for the separation of ibuprofen isomers: A dispersion corrected DFT study. J Mater Chem B 2017;5:6920-9. [DOI:10.1039/C7TB00755H]
4. Hutt AJ, Valentová J. The chiral switch: The development of single enantiomer drugs from racemates. Acta Fac Pharm Univ Comenianae 2003;50:7-23.
5. Johannsen M. Separation of enantiomers of ibuprofen on chiral stationary phases by packed column supercritical fluid chromatography. J Chromatogr A 2001;937:135-8. [DOI:10.1016/S0021-9673(01)01330-9]
6. Schurig V. Separation of enantiomers by gas chromatography. J Chromatogr A 2001;906:275-99. [DOI:10.1016/S0021-9673(00)00505-7]
7. Scriba GKE. Review Pharmaceutical and biomedical applications of chiral capillary electrophoresis and capillary electrochromatography : an update. Electrophoresis 2003;2409-21. [DOI:10.1002/elps.200305491]
8. Gallardo A, Roman JS, Barbas C, Cifuentes A, Simo C. Fast and sensitive capillary electrophoresis method to quantitatively monitor ibuprofen enantiomers released from polymeric drug. J Chromatogr B 2002;767:35-43. [DOI:10.1016/S0378-4347(01)00533-3]
9. Cizmáriková R, Valentová J, Hutta JA. Adrenergic beta-receptor blockers--a group of chiral drugs: enantioseparation in the group of beta-blockers. Ceska Slov Farm 2004; 53:9-17.
10. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9. [DOI:10.1016/j.cbpa.2005.10.005]
11. Wright MR, Sattari S, Brocks DR, Jamali F. Improved high-performance liquid chromatographic assay method for the enantiomers of ibuprofen. J Chromatogr B Biomed Sci Appl 1992;583:259-65. [DOI:10.1016/0378-4347(92)80562-5]
12. Shen TY. Perspectives in nonsteroidal anti‐inflammatory agents. Angew Chem Int Ed Engl 1972;11: 460-472. [DOI:10.1002/anie.197204601]
13. Esfandiarpoor S, Fazli M, Ganji MD. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Sci Rep 2017;7:1-12. [DOI:10.1038/s41598-017-14297-w]
14. Mueller JE, van Duin ACT, Goddard WA. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. J Phys Chem C 2010;114:4939-49. [DOI:10.1021/jp9035056]
15. Gardam M, McGeer A, Mertz D. Portable ultraviolet light surface-disinfecting devices for prevention of hospital-acquired infections: a health technology assessment. Ont Health Technol Assess Ser 2018;18:1-73.
16. van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396-409. [DOI:10.1021/jp004368u]
17. Cheung S, Deng W-Q, Duin ACT, Goddard WA. ReaxFF MgH Reactive Force Field for Hydride Systems. J Phys Chem A 2005;109:851-9. [DOI:10.1021/jp0460184]
18. Liu H, Chen Z, Dai S, Jiang DE. Selectivity trend of gas separation through nanoporous graphene. J Solid State Chem 2015;224:2-6. [DOI:10.1016/j.jssc.2014.01.030]
19. Neese F. Software update: the ORCA program system, version 4.0. Wires Computational Molecular Science 2018;8:1327. [DOI:10.1002/wcms.1327]
20. Saito R, Dresselhaus G, Dresselhaus MS. Trigonal warping effect of carbon nanotubes. Phys Rev B 2000;61:2981-90. [DOI:10.1103/PhysRevB.61.2981]
21. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, et al. Structural determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys Rev Lett 2001;86:1118-21. [DOI:10.1103/PhysRevLett.86.1118]
22. Power TD, Skoulidas AI, Sholl DS. Can chiral single walled carbon nanotubes be used as enantiospecific adsorbents? J Am Chem Soc 2002;124:1858-9. [DOI:10.1021/ja017585x]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rasoolidanesh M, Darvish Ganji M. Separation of ibuprofen drugs enantiomers by using chiral carbon nanotube with molecular dynamics simulation. MEDICAL SCIENCES 2020; 30 (3) :227-236
URL: http://tmuj.iautmu.ac.ir/article-1-1805-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 3 (Fall 2020) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660