1. 1. Von Heeren F, Thormann W. Capillary electrophoresis in clinical and forensic analysis. Electrophoresis 1997;18:2415-26. [ DOI:10.1002/elps.1150181232] 2. Naylor S, Benson LM, Tomlinson AJ. Application of capillary electrophoresis and related techniques to drug metabolism studies. J Chromatogr A 1996;735:415-38. [ DOI:10.1016/0021-9673(96)00068-4] 3. Soleymani E, Alinezhad H, Ganji MD, Tajbakhsh M. Enantioseparation performance of CNTs as chiral selectors for the separation of ibuprofen isomers: A dispersion corrected DFT study. J Mater Chem B 2017;5:6920-9. [ DOI:10.1039/C7TB00755H] 4. Hutt AJ, Valentová J. The chiral switch: The development of single enantiomer drugs from racemates. Acta Fac Pharm Univ Comenianae 2003;50:7-23. 5. Johannsen M. Separation of enantiomers of ibuprofen on chiral stationary phases by packed column supercritical fluid chromatography. J Chromatogr A 2001;937:135-8. [ DOI:10.1016/S0021-9673(01)01330-9] 6. Schurig V. Separation of enantiomers by gas chromatography. J Chromatogr A 2001;906:275-99. [ DOI:10.1016/S0021-9673(00)00505-7] 7. Scriba GKE. Review Pharmaceutical and biomedical applications of chiral capillary electrophoresis and capillary electrochromatography : an update. Electrophoresis 2003;2409-21. [ DOI:10.1002/elps.200305491] 8. Gallardo A, Roman JS, Barbas C, Cifuentes A, Simo C. Fast and sensitive capillary electrophoresis method to quantitatively monitor ibuprofen enantiomers released from polymeric drug. J Chromatogr B 2002;767:35-43. [ DOI:10.1016/S0378-4347(01)00533-3] 9. Cizmáriková R, Valentová J, Hutta JA. Adrenergic beta-receptor blockers--a group of chiral drugs: enantioseparation in the group of beta-blockers. Ceska Slov Farm 2004; 53:9-17. 10. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9. [ DOI:10.1016/j.cbpa.2005.10.005] 11. Wright MR, Sattari S, Brocks DR, Jamali F. Improved high-performance liquid chromatographic assay method for the enantiomers of ibuprofen. J Chromatogr B Biomed Sci Appl 1992;583:259-65. [ DOI:10.1016/0378-4347(92)80562-5] 12. Shen TY. Perspectives in nonsteroidal anti‐inflammatory agents. Angew Chem Int Ed Engl 1972;11: 460-472. [ DOI:10.1002/anie.197204601] 13. Esfandiarpoor S, Fazli M, Ganji MD. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Sci Rep 2017;7:1-12. [ DOI:10.1038/s41598-017-14297-w] 14. Mueller JE, van Duin ACT, Goddard WA. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. J Phys Chem C 2010;114:4939-49. [ DOI:10.1021/jp9035056] 15. Gardam M, McGeer A, Mertz D. Portable ultraviolet light surface-disinfecting devices for prevention of hospital-acquired infections: a health technology assessment. Ont Health Technol Assess Ser 2018;18:1-73. 16. van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396-409. [ DOI:10.1021/jp004368u] 17. Cheung S, Deng W-Q, Duin ACT, Goddard WA. ReaxFF MgH Reactive Force Field for Hydride Systems. J Phys Chem A 2005;109:851-9. [ DOI:10.1021/jp0460184] 18. Liu H, Chen Z, Dai S, Jiang DE. Selectivity trend of gas separation through nanoporous graphene. J Solid State Chem 2015;224:2-6. [ DOI:10.1016/j.jssc.2014.01.030] 19. Neese F. Software update: the ORCA program system, version 4.0. Wires Computational Molecular Science 2018;8:1327. [ DOI:10.1002/wcms.1327] 20. Saito R, Dresselhaus G, Dresselhaus MS. Trigonal warping effect of carbon nanotubes. Phys Rev B 2000;61:2981-90. [ DOI:10.1103/PhysRevB.61.2981] 21. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, et al. Structural determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys Rev Lett 2001;86:1118-21. [ DOI:10.1103/PhysRevLett.86.1118] 22. Power TD, Skoulidas AI, Sholl DS. Can chiral single walled carbon nanotubes be used as enantiospecific adsorbents? J Am Chem Soc 2002;124:1858-9. [ DOI:10.1021/ja017585x]
|