[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 31, Issue 4 (WINTER 2021) ::
MEDICAL SCIENCES 2021, 31(4): 406-412 Back to browse issues page
Determination of hemolysine genes frequency in antibiotic-resistant Staphylococcus aureus isolated from wound and urine samples of patients
Mina Aghsafi1 , Zahra Tahmasebi Fard 2
1- MSc of Microbial Biotechnology, Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
2- Associated Professor of Cellular and Molecular Biology, Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran , ztahmasebifard@yahoo.com
Abstract:   (1560 Views)
Background: Staphylococcus aureus is a pathogenic bacterium that can target host cell membranes with virulence factors such as toxins and peptides. This study was evaluated the frequency of alpha, beta, and delta hemolysine genes in antibiotic-resistant Staphylococcus aureus isolated from patients' urine and wound samples.
Materials and methods: This cross-sectional study was performed on 100 antibiotic-resistant Staphylococcus aureus (tetracycline, penicillin, gentamicin, co-trimoxazole, tobramycin, and ciprofloxacin) isolated from wound and urine samples of patients who referred to medical diagnostic laboratories. Then, their antibiotic susceptibility was determined by the disk diffusion method based on CLSI instruction. After examining the MIC and MBC of the samples, a single colony culture was performed for the samples and their DNA was extracted by using a commercial kit. By designing specific primers, hemolysine alpha, beta, and delta genes were amplified in the samples. The results were analyzed by statistical software.
Results: In isolated Staphylococcus aureus, the highest antibiotic resistance was related to co-trimoxazole with 63% and the highest sensitivity to penicillin with 53%. There was a statistically significant relationship between resistance to tetracycline and co-trimoxazole antibiotics and age, and also ciprofloxacin showed greater resistance in women than men. The frequency of hemolysine genes was 91% for HLA, 96% for HLB, and 99% for HLD.
Conclusion: Penicillin antibiotic with 53% sensitivity seems to be a better candidate than other antibiotics and the high abundance of hemolysine genes should be considered as an important concern in the medical community.
Keywords: Alpha hemolysine, Beta hemolysine, Delta hemolysine, Staphylococcus aureus.
Full-Text [PDF 418 kb]   (1077 Downloads)    
Semi-pilot: case-control | Subject: Microbiology
Received: 2021/07/10 | Accepted: 2021/09/15
References
1. Foster, T.J., Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev, 2017. 41(3): p. 430-449. [DOI:10.1093/femsre/fux007]
2. Curtis, M.M. and V. Sperandio, A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol, 2011. 4(2): p. 133-8. [DOI:10.1038/mi.2010.89]
3. Kebaier, C., et al., Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis, 2012. 205(5): p. 807-17. [DOI:10.1093/infdis/jir846]
4. Wiseman, G.M., The hemolysins of Staphylococcus aureus. Bacteriol Rev, 1975. 39(4): p. 317-44. [DOI:10.1128/br.39.4.317-344.1975]
5. Wilke, G.A. and J. Bubeck Wardenburg, Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13473-8. [DOI:10.1073/pnas.1001815107]
6. Dumont, A.L., et al., Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol, 2011. 79(3): p. 814-25. [DOI:10.1111/j.1365-2958.2010.07490.x]
7. Burnside, K., et al., Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One, 2010. 5(6): p. e11071. [DOI:10.1371/journal.pone.0011071]
8. Ventura, C.L., et al., Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One, 2010. 5(7): p. e11634. [DOI:10.1371/journal.pone.0011634]
9. Ira and L.J. Johnston, Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta, 2008. 1778(1): p. 185-97. [DOI:10.1016/j.bbamem.2007.09.021]
10. Verdon, J., et al., delta-hemolysin, an update on a membrane-interacting peptide. Peptides, 2009. 30(4): p. 817-23. [DOI:10.1016/j.peptides.2008.12.017]
11. Zhang, L., et al., Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China. BMC Vet Res, 2018. 14(1): p. 63. [DOI:10.1186/s12917-018-1374-7]
12. Vandenesch, F., G. Lina, and T. Henry, Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol, 2012. 2: p. 12. [DOI:10.3389/fcimb.2012.00012]
13. Eslami, G., et al., Identification of Virulence Genes in Staphylococcus aureus Isolates Segregated from Children's Wounds. Pejouhesh dar Pezeshki (Research in Medicine), 2019. 43(1): p. 52-57.
14. Yilmaz, E.S. and O. Aslantas, Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Med, 2017. 10(11): p. 1059-1064. [DOI:10.1016/j.apjtm.2017.10.003]
15. Nourbakhsh, F. and H. Momtaz, Detection of antibiotic resistance patterns in Staphylococcus aureus strains isolated from patients admitted to Isfahan hospitals during 2014-2015. Feyz Journal of Kashan University of Medical Sciences, 2015. 19(4): p. 356-363.
16. Parhizgari, N., S. Moosavian, and A. Sharifi, Antibiotic resistant pattern of methicillin resistant and sensitive Staphylococcus aureus isolated from patients durining 2009-2010, Ahvaz, Iran. Armaghane danesh, 2013. 18(9): p. 757-767.
17. Akhi, M.T., et al., Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control, 2015. 10: p. Doc02.
18. Shittu, A.O., et al., Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol, 2011. 11: p. 92. [DOI:10.1186/1471-2180-11-92]
19. Rasooli, H. and E. Ghorbanalinezhad, Isolation and Identification of Methicillin Resistant Staphylococcus aureus Based on hla , lukED, sei, and hlg Virulence Genes in Patients with Diabetic Foot Infection in Mazandaran Province. Iranian Journal of Medical Microbiology, 2018. 11(6): p. 192-202.
20. Arash Ghasem Azizi, Haghkhah Masoud, Pourtaghi H., Shirazinezhad A., Naserpour F. Phenotypic and Genotypic Analysis of Haemolysin Genes of Staphylococcus aureus isolated from Subclinical Mastitis in Savojbolagh County, Alborz Province. Veterinary Journal (Pajouhesh & Sazandegi. 2016; 114: 14-20.
21. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2017;41: 430-449. [DOI:10.1093/femsre/fux007]
22. Curtis, MM, Sperandio V. A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol 2011;4: 133-8. [DOI:10.1038/mi.2010.89]
23. Kebaier Ch, Chamberland RR, Allen IC, Gao X , Broglie PM , Hal JD, Jania C, et al. Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis 2012;205:807-17. [DOI:10.1093/infdis/jir846]
24. Wiseman, GM. The hemolysins of Staphylococcus aureus. Bacteriol Rev 1975;39:317-44. [DOI:10.1128/br.39.4.317-344.1975]
25. Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A 2010;107:13473-8. [DOI:10.1073/pnas.1001815107]
26. Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, et al. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 2011;79:814-25. [DOI:10.1111/j.1365-2958.2010.07490.x]
27. Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, et al. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 2010;5:e11071. [DOI:10.1371/journal.pone.0011071]
28. Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD, DeLeo FR. Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 2010;5:e11634. [DOI:10.1371/journal.pone.0011634]
29. Ira, Johnston LJ. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 2008;1778:185-97. [DOI:10.1016/j.bbamem.2007.09.021]
30. Verdon J, Girardin N, Lacombe C, Berjeaud JM, Héchard Y. delta-hemolysin, an update on a membrane-interacting peptide. Peptides 2009;30:817-23. [DOI:10.1016/j.peptides.2008.12.017]
31. Zhang L, Gao J, Barkema HW, Ali T, Liu G, Deng Y, et al. Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China. BMC Vet Res 2018;14:63. [DOI:10.1186/s12917-018-1374-7]
32. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2012;2:12. [DOI:10.3389/fcimb.2012.00012]
33. Karasartova D, Cavusoglu ZB, Turegun B, Ozsan MT, Şahin F. Identification of virulence genes carried by bacteriophages obtained from clinically isolated methicillin-resistant Staphylococcus aureus. Acta Microbiol Immunol Hung 2016;63:433-447. [DOI:10.1556/030.63.2016.026]
34. Yılmaz EŞ, Aslantaş Ö. Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Med 2017;10:1059-1064. [DOI:10.1016/j.apjtm.2017.10.003]
35. Goneau L W, Delport J, Langlois L, Poutanen S M, Razvi H, Reid G, et al. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS Microbes 2020:1; 1-14. [DOI:10.1093/femsmc/xtaa004]
36. Nourbakhsh, F, Momtaz H. Detection of antibiotic resistance patterns in Staphylococcus aureus strains isolated from patients admitted to Isfahan hospitals during 2014-2015. Feyz 2015;19: 356-363. [In Persian]
37. Parhizgari, N., S. Moosavian, and A. Sharifi. Antibiotic resistant pattern of methicillin resistant and sensitive Staphylococcus aureus isolated from patients durining 2009-2010. Armaghane Danesh 2013;18: 757-767. [In Persian]
38. Akhi MT, Ghotaslou R, Asgharzadeh M, Varshochi M, Pirzadeh T, Memar MY, et al. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control 2015;10: 02.
39. Shittu AO, Okon K, Adesida, S. Omotayo Oyedara, Witte W, Strommenger B, Layer F, et al. Antibiotic resistance and molecular epidemiology of Staphylococcus aureusin Nigeria. BMC Microbiol 2011;11: 92. [DOI:10.1186/1471-2180-11-92]
40. Rasooli, H. and E. Ghorbanalinezhad. Isolation and Identification of Methicillin Resistant Staphylococcus aureus Based on hla , lukED, sei, and hlg Virulence Genes in Patients with Diabetic Foot Infection in Mazandaran Province. Iran J Med Microb 2018;11:192-202. [In Persian]
41. Ghasem Azizi A, Masoud H, Pourtaghi H., Shirazinezhad A., Naserpour F. Phenotypic and Genotypic Analysis of Haemolysin Genes of Staphylococcus aureus isolated from Subclinical Mastitis in Savojbolagh County, Alborz Province. Vet J 2016; 114: 14-20. [In Persian]
42. Nasaj M, Saeidi Z, Asghari B, Roshanaei G, Arabestani MR. Identification of hemolysin encoding genes and their association with antimicrobial resistance pattern among clinical isolates of coagulase-negative Staphylococci. BMC Res Notes 2020;13:68. [DOI:10.1186/s13104-020-4938-0]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghsafi M, Tahmasebi Fard Z. Determination of hemolysine genes frequency in antibiotic-resistant Staphylococcus aureus isolated from wound and urine samples of patients. MEDICAL SCIENCES 2021; 31 (4) :406-412
URL: http://tmuj.iautmu.ac.ir/article-1-1897-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 4 (WINTER 2021) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645