1. Khan E, Siddiqui J, Shakoor S, Mehraj V, Jamil B, Hasan R. Dengue outbreak in Karachi, Pakistan, 2006: Experience at a tertiary care center". Trans R Soc 2007; 101: 1114-19. [ DOI:10.1016/j.trstmh.2007.06.016] 2. Gignoux E, Idowu R, Bawo L, Hurum L,Sprecher A, Bastard M, et al. Use of Capture-Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerg Infec Dis 2015; 21: 2265-67. [ DOI:10.3201/eid2112.150756] 3. Sithivong N, Izumiya H, Munnalath K, Phouthavane T, Chomlasak K, Sisavath L, et al. "Cholera outbreak, Laos, 2007". Emerg Infect Dis 2010; 16 : 745-6. [ DOI:10.3201/eid1604.091493] 4. World Health Organization. "Cholera Country Profile: Zimbabwe", Global Task Force on Cholera Control. Last update: 31 October 2009. [Available from: https://www.who.int/cholera/countries/ZimbabweCountryProfileOct2009.pdf?ua=1] 5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395, 497-506. [ DOI:10.1016/S0140-6736(20)30183-5] 6. World Health Organization. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection Is Suspected: Interim Guidance.2020. [Available from: https://apps.who.int/iris/handle/10665/330893] 7. Gorbalenya, AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Severe acute respiratory syndrome-related coronavirus: the species and its viruses-a statement of the Coronavirus Study Group. bioRxiv 2020.02.07.937862. [ DOI:10.1101/2020.02.07.937862] 8. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 Based on data as of the 31 December 2003. [Available from: http://www.who.int/csr/sars/country/table2004_04_21/en/] 9. World Health Organization. Middle East Respiratory Syndrome Coronavirus (MERSCoV). [Available from: https://www.who.int/emergencies/mers-cov/en/ 5 February2020] 10. Chakraborty I, Maity P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci Total Environ 2020;728:138882. [ DOI:10.1016/j.scitotenv.2020.138882] 11. Backer JA, Klinkenberg D, Wallinga, J. Incubation period of 2019 novel coronavirus(2019-nCoV) infections among travelers from Wuhan, China, 20-28 January2020. Euro Surveill 2020; 25:1-6. [ DOI:10.2807/1560-7917.ES.2020.25.5.2000062] 12. Wang M, Cao R, Zhang L, Yang X, Liu, J, Xu M. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269-71. [ DOI:10.1038/s41422-020-0282-0] 13. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020;6:4-7. [ DOI:10.1038/s41421-020-0147-1] 14. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020;14:69-71. [ DOI:10.5582/bst.2020.01020] 15. Liu W, Morse JS, Lalonde T, Xu S. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by2019-nCoV. Chembiochem 2020; 21:730-38. [ DOI:10.1002/cbic.202000047] 16. Zhao Y, Zhao Z, Wang Y, ZhouY, MaY, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan2019-nCov. BioRxiv 2020;2020.01.26.919985. [ DOI:10.1101/2020.01.26.919985] 17. Shim E, Tariq A, ChoiW, Lee Y, Chowell G. Transmission potential and severity of COVID-19 in South Korea. Int J Infect Dis 2020;93:339-44. [ DOI:10.1016/j.ijid.2020.03.031] 18. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 2003;171:3034-46. [ DOI:10.4049/jimmunol.171.6.3034] 19. Mihrshahi R, Barclay AN, Brown MH. Essential roles for Dok2and RasGAP in CD200 receptor-mediated regulation of humanmyeloid cells. J Immunol 2009;183:4879-86. [ DOI:10.4049/jimmunol.0901531] 20. Karnam G, Rygiel TP, Raaben M, Grinwis GCM, Coenjaerts FE, Ressing ME. CD200 receptor controls sex-specific TLR7responses to viral infection. PLoS Pathogen 2012;8:1-8. [ DOI:10.1371/journal.ppat.1002710] 21. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016;16:626-38. [ DOI:10.1038/nri.2016.90] 22. Ghazeeri G, Abdullah L, Abbas O. Immunological differences in women compared with men: overview and contributing factors. Am J Reprod Immunol 2011;66:163-69. [ DOI:10.1111/j.1600-0897.2011.01052.x] 23. Elgendy IY, Pepine CJ. Why are women better protected from COVID-19: Clues for men? Sex and COVID-19. Int J Cardiol 2020;315:105-06. [ DOI:10.1016/j.ijcard.2020.05.026] 24. Faure E, Kipnis E, Bortolotti P, Salik J. Clinical characteristics of Covid-19 in New York City. N Engl J Med 2020;29:2016-17. 25. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;1-13. 26. The Sex, Gender and COVID-19 Project. [Available from: https://globalhealth5050.org/the-sex-gender-and-covid-19-project/] 27. de la Vega R, Ruíz-Barquín R, Boros S, Szabo A. Could attitudes toward COVID-19 in Spain render men more vulnerable than women? Glob Public Health 2020;15:1278-91. [ DOI:10.1080/17441692.2020.1791212] 28. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob 2007; 30, 297-308. [ DOI:10.1016/j.ijantimicag.2007.05.015] 29. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395:470-473. [ DOI:10.1016/S0140-6736(20)30185-9] 30. Li W, Sui J, Huang IC, Kuhn JH, Radoshitzky SR, Marasco WA. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions ofACE2. Virology 2007;367:367-74. [ DOI:10.1016/j.virol.2007.04.035] 31. Different COVID-19 vaccines. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html#:~:text=Three%20COVID%2D19%20vaccines%20are,19%20vaccine%20in%20some%20situations. 32. Ruscio BA, Brubaker M, Glasser J, Hueston W, Hennessy TW. One health-astrategy for resilience in a changing arctic. Int J Circumpolar Health 2015; 74, 27913. [ DOI:10.3402/ijch.v74.27913] 33. Olivero J, Fa JE, Real R. Recent loss of closed forests is associated with Ebolavirus disease outbreaks. Sci Rep 2017; 7:14291. [ DOI:10.1038/s41598-017-14727-9] 34. Afelt A, Frutos R, Devaux C. Bats, coronaviruses, and deforestation: toward theemergence of novel infectious diseases? Front Microbiol 2018; 9: 702. [ DOI:10.3389/fmicb.2018.00702] 35. Shindell D, Borgford-Parnell N, Brauer M, Haines A, Kuylenstierna JCI, Leonard SA, Ramanathan V, Ravishankara A, Amann M, Srivastava L. A climate policy pathway for near- and long-term benefits. Science 2018; 356:493-494. [ DOI:10.1126/science.aak9521] 36. Fan Y, Zhao K, Shi ZL. Bat coronaviruses in China. Viruses 2019; 11, 210. [ DOI:10.3390/v11030210] 37. Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol 2002;71: 16-32. 38. Kańtoch M, Litwińska B, Szkoda M, Siennicka J. Znaczenie niedoboru witaminy. A dla patologii i immunologii zakazeń wirusowych [Importance of vitamin A deficiency in pathology and immunology of viral infections]. Rocz Panstw Zakl Hig 2002;53385-92. [In Polish] 39. Jee J, Hoet AE, Azevedo MP, Vlasova AN, Loerch SC, Pickworth CL, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res 2013;74: 1353-62. [ DOI:10.2460/ajvr.74.10.1353] 40. Gwin JA, Karl JP, Lutz LJ. Gaffeny-Stomberg E, Mc Clung JP, Pasiakos SM. Higher protein density diets are associated with greater diet quality and micronutrient intake in healthy young adults. Front Nutr 2019; 59:1-9. [ DOI:10.3389/fnut.2019.00059] 41. Hemilä H, Douglas RM. Vitamin C and acute respiratory infections. Int J Tuberc Lung Dis 1999;3: 756-61. 42. Chambial S, Dwivedi S, Shukla KK, John PJ and Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013;28: 314-28. [ DOI:10.1007/s12291-013-0375-3] 43. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019;10:696-710. [ DOI:10.1093/advances/nmz013] 44. Prasad AS, Fitzgerald JT, Bao B, Beck FW, Chandrasekar PH. Duration of symptoms and plasma cytokine levels in patients with the common cold treated with zinc acetate: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2000;133: 245-52. [ DOI:10.7326/0003-4819-133-4-200008150-00006] 45. Asdamongkol N, Phanachet P, Sungkanuparph S. Low plasma zinc levels and immunological responses to zinc supplementation in HIV-infected patients with immunological discordance after anti-retroviral therapy. Japan J Infec Dis 2013;66: 469-74. [ DOI:10.7883/yoken.66.469] 46. Baum MK, Lai S, Sales S, Page JB, Campa A. Randomized, controlled clinical trial of zinc supplementation to prevent immunological failure in HIV-infected adults. Clin Infect Dis 2010;50: 1653-60. [ DOI:10.1086/652864] 47. Arthur JR, McKenzie RC, Beckett GJ. Selenium in the immune system. J Nutr 2003;133:1457S-9S. [ DOI:10.1093/jn/133.5.1457S] 48. Beck MA. Selenium and vitamin E status: impact on viral pathogenicity. J Nutr 2007; 137: 1338-40. [ DOI:10.1093/jn/137.5.1338] 49. Tantcheva L, Stoeva ES, Galabov AS, Braykova AA, Savov VM, Mileva MM. Effect of vitamin E and vitamin C combination on experimental influenza virus infection. Methods Find Exp Clin Pharmacol 2003; 25:259-64. [ DOI:10.1358/mf.2003.25.4.769673] 50. Khayyatzadeh SS. Nutrition and Infection with COVID-19. Journal of Nutrition and Food Security (JNFS) 2020; 5: 93-96. [ DOI:10.18502/jnfs.v5i2.2795]
|