[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 32, Issue 1 (Spring 2022) ::
MEDICAL SCIENCES 2022, 32(1): 11-20 Back to browse issues page
Investigation on cross-linked nanomicrobial cellulose properties as modern wound dressing
Sahar Abbasi Geravand1 , Ramin Khajavi 2, Mohammad Karim Rahimi3 , Manouchehr Shamsini Ghiyasvand4 , Amin Meftahi5
1- PhD Student, Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2- Professor, Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran , Khajavi@azad.ac.ir
3- Associate Professor, Department of Microbiology, Medical Faculty, Islamic Azad Medical University of Tehran, Tehran, Iran
4- Assistant Professor, Faculty of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
5- Assistant Professor, Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract:   (1880 Views)
Background: Nanomicrobial cellulose is an important biopolymer with a three-dimensional structure that is produced by some microorganisms and has been widely used in medicine. One of the unique properties of microbial cellulose is its very high water absorption, which can be used to produce modern wound dressings. But after drying, it’s three-dimensional structure collapses and the amount of water reabsorption decreases. Accordingly, the aim of this project was to preserve the three-dimensional structure of nanomicrobial cellulose by networking it and improving the water reabsorption properties of this biopolymer. In addition, the cell viability, proliferation, and cell growth of the modified structure and untreated microbial cellulose were also studied.
Materials and methods: In this study, microbial cellulose was produced, purified, and neutralized using stationary culture. The samples were then treated with different concentrations of citric acid/sodium hypophosphite and crosslinked. Finally, the characteristics of treated and raw samples were studied by various tests including ATR-FTIR, MTT, SEM, water absorption and in vitro and in vitro tests.
Results: According to the results, it was found that the cross-linking operation prevents the collapse of the structure and not only does not cause toxicity, but in addition to increasing water uptake, it also increases viability, adhesion, and cell proliferation in the modified cellulose.
Conclusion: Cross-linked nanomicrobial cellulose has high potential as a modern wound dressing.
Keywords: Nanomicrobial cellulose, Cross-linking, Modern wound dressing, Cell viability, Proliferation, High water absorption
Full-Text [PDF 728 kb]   (1298 Downloads)    
Semi-pilot: Experimental | Subject: Dermatology
Received: 2021/09/1 | Accepted: 2022/01/12 | Published: 2022/03/21
1. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. Microbial cellulose--the natural power to heal wounds. Biomaterials 2006;27:145-51. [DOI:10.1016/j.biomaterials.2005.07.035]
2. Meftahi A, Khajavi R, Rashidi A, Sattari M, Yazdanshenas ME, Torabi M. The effects of cotton gauze coating with microbial cellulose. Cellulose 2010;17:199-204. [DOI:10.1007/s10570-009-9377-y]
3. Gorgieva S, Trček J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 2019;9:1-20. [DOI:10.3390/nano9101352]
4. Khajavi R, Meftahi A, Alibakhshi S, Samih L. Investigation of Microbial cellulose/Cotton/Silver nanobiocomposite as a modern wound dressing. Adv Mater Res 2014;829:616-621. [DOI:10.4028/www.scientific.net/AMR.829.616]
5. Lin D, Liu Z, Shen R, Chen S, Yang X. Bacterial cellulose in food industry: Current research and future prospects. Int J Biol Macromol 2020;158:1007-1019. [DOI:10.1016/j.ijbiomac.2020.04.230]
6. Bianchet RT, Vieira Cubas AL, Machado MM, Siegel Moecke EH. Applicability of bacterial cellulose in cosmetics - bibliometric review. Biotechnol Reports 2020;27:e00502-e00502. [DOI:10.1016/j.btre.2020.e00502]
7. Kumar A, Cardia R, Cappellini G. Electronic and optical properties of chromophores from bacterial cellulose. Cellulose 2018;25:2191-2203. [DOI:10.1007/s10570-018-1728-0]
8. Rosyida VT, Indrianingsih AW, Hayati SN, Apriyana W. The effect of different drying temperature on crystallinity and morphology structure of bacterial cellulose. IOP Conf Ser Earth Environ Sci 2020;462. [DOI:10.1088/1755-1315/462/1/012050]
9. Cao Y meng, Liu M yu, Xue Z wei, et al. Surface-structured bacterial cellulose loaded with hUSCs accelerate skin wound healing by promoting angiogenesis in rats. Biochem Biophys Res Commun 2019;516:1167-1174. [DOI:10.1016/j.bbrc.2019.06.161]
10. Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications. Polym Rev 2020;60:144-170. [DOI:10.1080/15583724.2019.1663210]
11. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, et al. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 2017;104:97-106. [DOI:10.1016/j.ijbiomac.2017.05.171]
12. Sharma C, Bhardwaj NK. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mater Sci Eng C 2019;104:109963. [DOI:10.1016/j.msec.2019.109963]
13. Lynd LR, Weimer PJ, Zyl WH Van, Isak S. Microbial Cellulose Utilization : Fundamentals and Biotechnology Microbial Cellulose Utilization : Fundamentals and Biotechnology. Microbiol Mol Biol Rev 2002;66:506-577. [DOI:10.1128/MMBR.66.3.506-577.2002]
14. . Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D. Recent advances in bacterial cellulose. Cellulose 2014;21:1-30. [DOI:10.1007/s10570-013-0088-z]
15. Wang J, Zhu Y, Du J. Bacterial cellulose: A natural nanomaterial for biomedical applications. J Mech Med Biol 2011;11:285-306. 16. Meftahi A, Khajavi R, Rashidi A, Rahimi MK, Bahador A. Preventing the collapse of 3D bacterial cellulose network via citric acid. J Nanostructure Chem 2018;8:311-320. https://doi.org/10.1007/s40097-018-0275-4 17. Zahedi E, Esmaeili A, Eslahi N, Shokrgozar MA, Simchi A. Fabrication and characterization of core-shell electrospun fibrous mats containing medicinal herbs for wound healing and skin tissue engineering. Mar Drugs 2019;17:1-13. https://doi.org/10.3390/md17010027 18. Qiu Y, Qiu L, Cui J, Wei Q. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C 2016;59:303-309. https://doi.org/10.1016/j.msec.2015.10.016 19. Mosmann T, DNAX. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4 20. Sayed SM, Jia H, Jiang Y, Zhu Y, Ma L, Yin F. Supporting Information Photostable AIE Probes for Wash-Free, Ultrafast, and High-Quality. J Mater Chem B 2021;9: 4303-4308. https://doi.org/10.1039/D1TB00049G 21. Ciecholewska-Juśko D, Żywicka A, Junka A, Drozd R, Sobolewski P, Migdał P, et al. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings. Carbohydr Polym 2021;253:117247. https://doi.org/10.1016/j.carbpol.2020.117247 22. Mohamad N, Loh EYX, Fauzi MB, Ng MH, Mohd Amin MCI. In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv Transl Res 2019;9:444-452. https://doi.org/10.1007/s13346-017-0475-3 23. Gil Giraldo GA, Mantovan J, Marim BM, Kishima JOF, Mali S. Surface Modification of Cellulose from Oat Hull with Citric Acid Using Ultrasonication and Reactive Extrusion Assisted Processes. Polysaccharides 2021; 2:218-233. https://doi.org/10.3390/polysaccharides2020015 24. Awada H, Montplaisir D, Daneault C. Cross-Linking of Papers Based on Thermomechanical Pulp Fibers by Polycarboxylic Acids: In fl uence on the Wet Breaking Length. Ind Eng Chem Res 2014; 11: 4312-4317. https://doi.org/10.1021/ie500101n 25. Widsten P, Dooley N, Parr R, Capricho J, Suckling I. Citric acid crosslinking of paper products for improved high-humidity performance. Carbohydr Polym 2014;101:998-1004. https://doi.org/10.1016/j.carbpol.2013.10.002 26. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-ferrer J, Martínez-pastor J. Development of self-assembled bacterial cellulose - starch nanocomposites. Mater Sci Eng C 2009;29:1098-1104. https://doi.org/10.1016/j.msec.2008.09.024 27. Wang J, Wan YZ, Luo HL, Gao C, Huang Y. Immobilization of gelatin on bacterial cellulose nano fi bers surface via crosslinking technique. Mater Sci Eng C 2012;32:536-541. https://doi.org/10.1016/j.msec.2011.12.006 28. Herndon DN, Editor. Total Burn Care. Amsterdam, Netherlands: Elsevier; 2012. P.808. [DOI:10.1142/S0219519411004058]
16. Sulaeva I, Henniges U, Rosenau T, Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications: A review. Biotechnol Adv 2015;33:1547-1571. [DOI:10.1016/j.biotechadv.2015.07.009]
17. Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 2017;164:214-221. [DOI:10.1016/j.carbpol.2017.01.061]
18. Dmitrović S, Matović B, Tasić N, Maksimović V, Sosnin M, Radotić K. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int J Biol Macromol 2018;118:494-503. [DOI:10.1016/j.ijbiomac.2018.06.067]
19. Rodrigues P, Sousa F De, Saska S, Barud H, Lima LR De, Amaro Martins V De, et al. Bacterial Cellulose / Collagen Hydrogel for Wound Healing. Materials Research 2016; 19: 106-116. [DOI:10.1590/1980-5373-MR-2015-0249]
20. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 2013;94:603-611. [DOI:10.1016/j.carbpol.2013.01.076]
21. Volova TG, Shumilova AA, Nikolaeva ED, Kirichenko AK, Shishatskaya EI. Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB). Int J Biol Macromol 2019;131:230-240. [DOI:10.1016/j.ijbiomac.2019.03.068]
22. Cacicedo ML, Pacheco G, Islan GA, Alvarez VA, Barud HS, Castro GR. Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. Int J Biol Macromol 2020;147:1136-1145. [DOI:10.1016/j.ijbiomac.2019.10.082]
23. Wichai S, Chuysinuan P, Chaiarwut S, Ekabutr P, Supaphol P. Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. J Drug Deliv Sci Technol 2019;51:662-671. [DOI:10.1016/j.jddst.2019.03.043]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abbasi Geravand S, Khajavi R, Rahimi M K, Shamsini Ghiyasvand M, Meftahi A. Investigation on cross-linked nanomicrobial cellulose properties as modern wound dressing. MEDICAL SCIENCES 2022; 32 (1) :11-20
URL: http://tmuj.iautmu.ac.ir/article-1-1937-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 1 (Spring 2022) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4652