[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 32, Issue 3 (Fall 2022) ::
MEDICAL SCIENCES 2022, 32(3): 293-302 Back to browse issues page
The effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Razieh Raghebi1 , Soheila Mohammadi Safari Kuchi2 , Mahboobeh Karimi2 , Mohammad Amin Edalatmanesh 3
1- MSc in Cell and Developmental Biology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2- MSc in Animal Physiology, Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3- Department of Biology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran , amin.edalatmanesh@gmail.com
Abstract:   (888 Views)

Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication.
Materials and methods: 25 pregnant Wistar female rats were randomly divided into 5 groups, including control, TMT+Saline, TMT+GA100, TMT+GA200 and TMT+GA400. To induce TMT intoxication, TMT (9 mg/kg body weight) was injected intraperitoneally into pregnant rats on embryonic day (ED) 14. From the ED12 to ED18, the treatment groups received orally GA at different doses. After fetal cesarean section on the ED21, neuronal density assessment of the entorhinal cortex, CA1 and CA3 regions of the hippocampus and forebrain level of catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA) was performed by ELISA.
Results: The results showed a significant increase in the activity of CAT and SOD enzymes and a significant decrease in MDA in the forebrain of GA-receiving groups compared to the TMT + Saline group. In addition, increased neuronal density was observed in the entorhinal cortex and CA1/CA3 regions of the hippocampus in the GA treated rats compared to the TMT + Saline group.
Conclusion: Prenatal TMT intoxication induced oxidative stress in the fetal forebrain, causing damage to the entorhinal cortex and hippocampus of rat fetal brain. On the other hand, GA prevented and improved neuronal damage in these areas of the fetal brain.
 
Keywords: Entorinal cortex, Hippocampus, Trimethylettin, Prenatal, Gallic acid
Full-Text [PDF 590 kb]   (296 Downloads)    
Semi-pilot: Experimental | Subject: Animal Biology
Received: 2022/02/24 | Accepted: 2022/04/19 | Published: 2022/09/19
References
1. 1. Malekzadeh S, Edalatmanesh MA, Mehrabani D, Shariati M. Drugs induced alzheimer disease in animal model. Galen Med J 2017; 6:185-96.
2. Pompili E, Fabrizi C, Fumagalli L, Fornai F. Autophagy in trimethyltin-induced neurodegeneration. J Neural Transm (Vienna) 2020;127:987-998. [DOI:10.1007/s00702-020-02210-1]
3. Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, et al. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [DOI:10.1016/j.brainresbull.2016.07.010]
4. Tamburella A, Micale V, Mazzola C, Salomone S, Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 2012;683:148-54. [DOI:10.1016/j.ejphar.2012.02.045]
5. Kuramoto N, Seko K, Sugiyama C, Shuto M, Ogita K. Trimethyltin initially activates the caspase 8/caspase 3 pathway for damaging the primary cultured cortical neurons derived from embryonic mice. J Neurosci Res 2011;89:552-61. [DOI:10.1002/jnr.22588]
6. Gasparova Z, Janega P, Stara V, Ujhazy E. Early and late stage of neurodegeneration induced by trimethyltin in hippocampus and cortex of male Wistar rats. Neuro Endocrinol Lett 2012;33:689-96.
7. Ferraz da Silva I, Freitas-Lima LC, Graceli JB, Rodrigues LCM. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review. Front Endocrinol (Lausanne) 2018;8:366. [DOI:10.3389/fendo.2017.00366]
8. Ishida K, Saiki T, Umeda K, Miyara M, Sanoh S, Ohta S, et al. Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain. Biol Pharm Bull 2017;40:1121-1124. [DOI:10.1248/bpb.b17-00209]
9. Kim SA, Chai JH, Jang EH. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 2021;22:8009. [DOI:10.3390/ijms22158009]
10. Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer's disease: Therapeutic effects of Saffron. Biomed Pharmacother 2021;133:110995. [DOI:10.1016/j.biopha.2020.110995]
11. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 2019;22:225-237.
12. Al Zahrani NA, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020;204:112609. [DOI:10.1016/j.ejmech.2020.112609]
13. Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem Res 2018;43:1150-1160. [DOI:10.1007/s11064-018-2530-y]
14. Khodabandeh H, Edalatmanesh MA. The effect of Ferulic acid on motor-cognitive learning in Trimethyltin- induced hyperactivity model. Med Sci 2021; 31:307-318. [In Persian] [DOI:10.52547/iau.31.3.307]
15. Esfandiari Z, Edalatmanesh MA. Neuroprotective Effect of Gallic Acid on Memory Deficit and Content of BDNF in Brain Entorhinal Cortex of Rat's Offspring in Uteroplacental Insufficiency Model. JSSU 2020; 27:1864-76. [In Persian] [DOI:10.18502/ssu.v27i9.2306]
16. Abdollahi H, Edalatmanesh M A, Hosseini E, Foroozanfar M. The Effects of Hesperidin on BDNF/TrkB Signaling Pathway and Oxidative Stress Parameters in the Cerebral Cortex of the Utero-placental Insufficiency Fetal Rat Model. Basic Clin Nerosci 2021; 12:511-522. [DOI:10.32598/bcn.2021.2187.1]
17. Moghadas M, Edalatmanesh MA, Robati R. Histopathological analysis from gallic acid administration on hippocampal cell density, depression, and anxiety related behaviors in a trimethyltin intoxication model. Cell J 2016; 17:659.
18. Ceccariglia S, Alvino A, Del Fà A, Parolini O, Michetti F, Gangitano C. Autophagy is Activated In Vivo during Trimethyltin-Induced Apoptotic Neurodegeneration: A Study in the Rat Hippocampus. Int J Mol Sci 2019; 21. pii: E175. [DOI:10.3390/ijms21010175]
19. Tang X, Wu X, Dubois AM, Sui G, Wu B, Lai G, et al. Toxicity of trimethyltin and dimethyltin in rats and mice. Bull Environ Contam Toxicol 2013;90:626-33. [DOI:10.1007/s00128-013-0975-x]
20. Liu M, Pi H, Xi Y, Wang L, Tian L, Chen M, et al. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy 2021;17:903-924 [DOI:10.1080/15548627.2020.1739444]
21. Fabrizi C, Pompili E, Somma F, De Vito S, Ciraci V, Artico M, et al. Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment. J Appl Toxicol 2017;37:207-213. [DOI:10.1002/jat.3344]
22. Kamaltdinova E, Pershina E, Mikheeva I, Bugaev-Makarovskiy N, Arkhipov V. Different Activation of IL-10 in the Hippocampus and Prefrontal Cortex During Neurodegeneration Caused by Trimethyltin Chloride. J Mol Neurosci 2021;71:613-617. [DOI:10.1007/s12031-020-01682-w]
23. Lee S, Kang S, Kim J, Yoon S, Kim SH, Moon C. Enhanced expression of immediate-early genes in mouse hippocampus after trimethyltin treatment. Acta Histochem 2016;118:679-684. [DOI:10.1016/j.acthis.2016.09.001]
24. Kim SA, Chai JH, Jang EH. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 2021;22:8009. [DOI:10.3390/ijms22158009]
25. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017;39:73-82. [DOI:10.1080/01616412.2016.1251711]
26. Toesca A, Geloso MC, Mongiovì AM, Furno A, Schiattarella A, Michetti F, et al. Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats. Neurochem Res 2016;41:1559-69. [DOI:10.1007/s11064-016-1869-1]
27. Geloso MC, Corvino V, Michetti F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 2011;58:729-38. [DOI:10.1016/j.neuint.2011.03.009]
28. Nilsberth C, Kostyszyn B, Luthman J. Changes in APP, PS1 and other factors related to Alzheimer's disease pathophysiology after trimethyltin-induced brain lesion in the rat. Neurotox Res 2002;4:625-636. [DOI:10.1080/1029842021000045471]
29. Yoneyama M, Seko K, Kawada K, Sugiyama C, Ogita K. High susceptibility of cortical neural progenitor cells to trimethyltin toxicity: involvement of both caspases and calpain in cell death. Neurochem Int 2009;55:257-64. [DOI:10.1016/j.neuint.2009.03.008]
30. de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2021;338:127535. [DOI:10.1016/j.foodchem.2020.127535]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raghebi R, Mohammadi Safari Kuchi S, Karimi M, Edalatmanesh M A. The effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat. MEDICAL SCIENCES 2022; 32 (3) :293-302
URL: http://tmuj.iautmu.ac.ir/article-1-1986-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 3 (Fall 2022) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645