1. 1. Malekzadeh S, Edalatmanesh MA, Mehrabani D, Shariati M. Drugs induced alzheimer disease in animal model. Galen Med J 2017; 6:185-96. 2. Pompili E, Fabrizi C, Fumagalli L, Fornai F. Autophagy in trimethyltin-induced neurodegeneration. J Neural Transm (Vienna) 2020;127:987-998. [ DOI:10.1007/s00702-020-02210-1] 3. Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, et al. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [ DOI:10.1016/j.brainresbull.2016.07.010] 4. Tamburella A, Micale V, Mazzola C, Salomone S, Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 2012;683:148-54. [ DOI:10.1016/j.ejphar.2012.02.045] 5. Kuramoto N, Seko K, Sugiyama C, Shuto M, Ogita K. Trimethyltin initially activates the caspase 8/caspase 3 pathway for damaging the primary cultured cortical neurons derived from embryonic mice. J Neurosci Res 2011;89:552-61. [ DOI:10.1002/jnr.22588] 6. Gasparova Z, Janega P, Stara V, Ujhazy E. Early and late stage of neurodegeneration induced by trimethyltin in hippocampus and cortex of male Wistar rats. Neuro Endocrinol Lett 2012;33:689-96. 7. Ferraz da Silva I, Freitas-Lima LC, Graceli JB, Rodrigues LCM. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review. Front Endocrinol (Lausanne) 2018;8:366. [ DOI:10.3389/fendo.2017.00366] 8. Ishida K, Saiki T, Umeda K, Miyara M, Sanoh S, Ohta S, et al. Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain. Biol Pharm Bull 2017;40:1121-1124. [ DOI:10.1248/bpb.b17-00209] 9. Kim SA, Chai JH, Jang EH. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 2021;22:8009. [ DOI:10.3390/ijms22158009] 10. Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer's disease: Therapeutic effects of Saffron. Biomed Pharmacother 2021;133:110995. [ DOI:10.1016/j.biopha.2020.110995] 11. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 2019;22:225-237. 12. Al Zahrani NA, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020;204:112609. [ DOI:10.1016/j.ejmech.2020.112609] 13. Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem Res 2018;43:1150-1160. [ DOI:10.1007/s11064-018-2530-y] 14. Khodabandeh H, Edalatmanesh MA. The effect of Ferulic acid on motor-cognitive learning in Trimethyltin- induced hyperactivity model. Med Sci 2021; 31:307-318. [In Persian] [ DOI:10.52547/iau.31.3.307] 15. Esfandiari Z, Edalatmanesh MA. Neuroprotective Effect of Gallic Acid on Memory Deficit and Content of BDNF in Brain Entorhinal Cortex of Rat's Offspring in Uteroplacental Insufficiency Model. JSSU 2020; 27:1864-76. [In Persian] [ DOI:10.18502/ssu.v27i9.2306] 16. Abdollahi H, Edalatmanesh M A, Hosseini E, Foroozanfar M. The Effects of Hesperidin on BDNF/TrkB Signaling Pathway and Oxidative Stress Parameters in the Cerebral Cortex of the Utero-placental Insufficiency Fetal Rat Model. Basic Clin Nerosci 2021; 12:511-522. [ DOI:10.32598/bcn.2021.2187.1] 17. Moghadas M, Edalatmanesh MA, Robati R. Histopathological analysis from gallic acid administration on hippocampal cell density, depression, and anxiety related behaviors in a trimethyltin intoxication model. Cell J 2016; 17:659. 18. Ceccariglia S, Alvino A, Del Fà A, Parolini O, Michetti F, Gangitano C. Autophagy is Activated In Vivo during Trimethyltin-Induced Apoptotic Neurodegeneration: A Study in the Rat Hippocampus. Int J Mol Sci 2019; 21. pii: E175. [ DOI:10.3390/ijms21010175] 19. Tang X, Wu X, Dubois AM, Sui G, Wu B, Lai G, et al. Toxicity of trimethyltin and dimethyltin in rats and mice. Bull Environ Contam Toxicol 2013;90:626-33. [ DOI:10.1007/s00128-013-0975-x] 20. Liu M, Pi H, Xi Y, Wang L, Tian L, Chen M, et al. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy 2021;17:903-924 [ DOI:10.1080/15548627.2020.1739444] 21. Fabrizi C, Pompili E, Somma F, De Vito S, Ciraci V, Artico M, et al. Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment. J Appl Toxicol 2017;37:207-213. [ DOI:10.1002/jat.3344] 22. Kamaltdinova E, Pershina E, Mikheeva I, Bugaev-Makarovskiy N, Arkhipov V. Different Activation of IL-10 in the Hippocampus and Prefrontal Cortex During Neurodegeneration Caused by Trimethyltin Chloride. J Mol Neurosci 2021;71:613-617. [ DOI:10.1007/s12031-020-01682-w] 23. Lee S, Kang S, Kim J, Yoon S, Kim SH, Moon C. Enhanced expression of immediate-early genes in mouse hippocampus after trimethyltin treatment. Acta Histochem 2016;118:679-684. [ DOI:10.1016/j.acthis.2016.09.001] 24. Kim SA, Chai JH, Jang EH. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 2021;22:8009. [ DOI:10.3390/ijms22158009] 25. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017;39:73-82. [ DOI:10.1080/01616412.2016.1251711] 26. Toesca A, Geloso MC, Mongiovì AM, Furno A, Schiattarella A, Michetti F, et al. Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats. Neurochem Res 2016;41:1559-69. [ DOI:10.1007/s11064-016-1869-1] 27. Geloso MC, Corvino V, Michetti F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 2011;58:729-38. [ DOI:10.1016/j.neuint.2011.03.009] 28. Nilsberth C, Kostyszyn B, Luthman J. Changes in APP, PS1 and other factors related to Alzheimer's disease pathophysiology after trimethyltin-induced brain lesion in the rat. Neurotox Res 2002;4:625-636. [ DOI:10.1080/1029842021000045471] 29. Yoneyama M, Seko K, Kawada K, Sugiyama C, Ogita K. High susceptibility of cortical neural progenitor cells to trimethyltin toxicity: involvement of both caspases and calpain in cell death. Neurochem Int 2009;55:257-64. [ DOI:10.1016/j.neuint.2009.03.008] 30. de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem 2021;338:127535. [ DOI:10.1016/j.foodchem.2020.127535]
|