[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 33, Issue 2 (summer 2023) ::
MEDICAL SCIENCES 2023, 33(2): 151-161 Back to browse issues page
Association between genes polymorphisms in CYP4F2 (rs2108622), VKORC1 (rs9923231,rs2884737), CYP2C9*2 (rs1799853) for required therapeutic dose of warfarin in patients referred to cardiovascular centers in Tehran Province
Shahrzad Zahedifar1 , Shirin Ghadami2 , Maryam Eslami 3, Mahmoud Tavalaie4 , Mahdi Afshari5
1- MSc Student, Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Medical Genetics Center of Hajar hospital, AJA University of Medical Sciences, Tehran, Iran
3- Assistant Professor, Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , Assistant Professor, Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , drmaryam.eslami2020@gmail.com
4- Medical Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
5- Department of Epidemiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
Abstract:   (559 Views)
Background: Warfarin is the most commonly prescribed anticoagulant drug for treating thromboembolic events. There is a variation in dose requirements for each individual due to nongenetic factors and gene polymorphisms. In this study, we performed Tetra-ARMS PCR molecular technique in order to investigate the association between 5 gene polymorphisms and patient characteristics with warfarin dose requirements in all Iranian ethnic groups.  
Materials and methods: This study was done on 68 Iranian patients on warfarin treatment who attended the cardiovascular centers in Tehran Province for regular INR monitoring. Genotyping of VKORC1 (rs9923231 and rs2884737), CYP4F2, and CYP2C9*3 were performed using Tetra-Arms-PCR and conventional PCR was done for the detection of CYP2C9*2 (rs1799853) SNP. Multiple regression model was performed for statistical analyses and P<0.05 was considered as the significance level.
Results: Of 5 SNPs, VKORC1 rs9923231, CYP2C9*2, and CYP2C9*3 variants alleles had a significantly lower mean warfarin daily dose compared with the wild-type genotypes, whereas no significant association was seen between VKORC1 rs288473710, CYP4F2, and warfarin maintenance doses. Furthermore, despite a significant association between patients’ age and warfarin dose (p=0.021), it was not statistically significant for other demographic characteristics.
Conclusion: It can be concluded that VKORC1 rs9923231, CYP2C9*2, and CYP2C9*3 gene polymorphisms and patients’ age had a significant effect on warfarin dose. The new warfarin-dosing algorithm was developed based on VKORC1 rs9923231, CYP2C9*2, and CYP2C9*3 genotypes for predicting the required dose of warfarin.
Keywords: Warfarin, VKORC1, CYP2C9, CYP4F2.
Full-Text [PDF 556 kb]   (209 Downloads)    
Semi-pilot: Survey/Cross Sectional/Descriptive | Subject: Genetic
Received: 2022/10/8 | Accepted: 2023/01/18 | Published: 2023/05/31
1. Syn NL, Wong AL, Lee SC, Teoh HL, Yip JWL, Seet RC, et al. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: a randomized controlled trial. BMC Med 2018;16:104. 2. Porter WR. Warfarin: history, tautomerism and activity. J Comput Aided Mol Des 2010;24:553-73. https://doi.org/10.1007/s10822-010-9335-7 3. Wilkinson TJ, Sainsbury R. Evaluation of a warfarin initiation protocol for older people. Intern Med J 2003;33:465-7. https://doi.org/10.1046/j.1445-5994.2003.00452.x 4. Gedge J, Orme S, Hampton KK, Channer KS, Hendra TJ. A comparison of a low-dose warfarin induction regimen with the modified Fennerty regimen in elderly inpatients. Age Ageing 2000;29:31-4. https://doi.org/10.1093/ageing/29.1.31 5. Poller L, Shiach CR, MacCallum PK, Johansen AM, Münster AM, Magalhães A, et al. Multicentre randomised study of computerised anticoagulant dosage. European Concerted Action on Anticoagulation. Lancet 1998;352:1505-9. https://doi.org/10.1016/S0140-6736(98)04147-6 6. Fennerty A, Dolben J, Thomas P, Backhouse G, Bentley DP, Campbell IA, et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J 1984;288:1268-70. https://doi.org/10.1136/bmj.288.6426.1268 7. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res 2007;5:8-16. https://doi.org/10.3121/cmr.2007.724 8. Xue L, Zhang Y, Xie C, Zhou L, Liu L, Zhang H, et al. Relationship between warfarin dosage and international normalized ratio: a dose-response analysis and evaluation based on multicenter data. Eur J Clin Pharmacol 2019;75:785-94. https://doi.org/10.1007/s00228-019-02655-8 9. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One 2012;7:e44064. https://doi.org/10.1371/journal.pone.0044064 10. Liang R, Wang C, Zhao H, Huang J, Hu D, Sun Y. Influence of CYP4F2 genotype on warfarin dose requirement-a systematic review and meta-analysis. Thromb Res 2012;130:38-44. https://doi.org/10.1016/j.thromres.2011.11.043 11. Yang L, Ge W, Yu F, Zhu H. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement--a systematic review and meta analysis. Thromb Res 2010;125: e159-66. https://doi.org/10.1016/j.thromres.2009.10.017 12. Sun Y, Wu Z, Li S, Qin X, Li T, Xie L, et al. Impact of gamma-glutamyl carboxylase gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Thromb Res 2015;135:739-47. https://doi.org/10.1016/j.thromres.2015.01.029 13. Liu HQ, Zhang CP, Zhang CZ, Liu XC, Liu ZJ. Influence of two common polymorphisms in the EPHX1 gene on warfarin maintenance dosage: a meta-analysis. Biomed Res Int 2015;2015:564149. https://doi.org/10.1155/2015/564149 14. Henderson LM, Robinson RF, Ray L, Khan BA, Li T, Dillard DA, et al. VKORC1 and Novel CYP2C9 Variation Predict Warfarin Response in Alaska Native and American Indian People. Clin Transl Sci 2019;12:312-20. https://doi.org/10.1111/cts.12611 15. Wu AH, Wang P, Smith A, Haller C, Drake K, Linder M, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 2008;9:169-78. https://doi.org/10.2217/14622416.9.2.169 16. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R Jr., et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 2007;53:1199-205. https://doi.org/10.1373/clinchem.2006.078139 17. Harikrishnan S, Koshy L, Subramanian R, Sanjay G, Vineeth CP, Nair AJ, et al. Value of VKORC1 (-1639G>A) rs9923231 genotyping in predicting warfarin dose: A replication study in South Indian population. Indian Heart J 2018;70:S110-5. https://doi.org/10.1016/j.ihj.2018.07.006 18. Li J, Chen T, Jie F, Xiang H, Huang L, Jiang H, et al. Impact of VKORC1, CYP2C9, CYP1A2, UGT1A1, and GGCX polymorphisms on warfarin maintenance dose: Exploring a new algorithm in South Chinese patients accept mechanical heart valve replacement. Medicine (Baltimore) 2022;101:e29626. https://doi.org/10.1097/MD.0000000000029626 19. Luo Z, Li X, Zhu M, Tang J, Li Z, Zhou X, et al. Identification of novel variants associated with warfarin stable dosage by use of a two-stage extreme phenotype strategy. J Thromb Haemost 2017;15:28-37. https://doi.org/10.1111/jth.13542 20. van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ. Effect of study setting on anticoagulation control: a systematic review and metaregression. Chest 2006;129:1155-66. https://doi.org/10.1378/chest.129.5.1155 21. Ali M, Kadhim H, Sahib A, Abdulamir A, Altawil R. The Effect of CYP2C9 and VKORC1 Genetic Polymorphism on Warfarin Dose Requirements in a Sample of Iraqi Patients. Journal of Kerman University of Medical Sciences 2021;28:139-49. [In Persian] 22. Li W, Zhao P, Chen L, Lai X, Shi G, Li L, et al. Impact of CYP2C9, VKORC1, ApoE and ABCB1 polymorphisms on stable warfarin dose requirements in elderly Chinese patients. Pharmacogenomics 2020;21:101-10. https://doi.org/10.2217/pgs-2019-0139 23. Liu R, Cao J, Zhang Q, Shi XM, Pan XD, Dong R. Clinical and genetic factors associated with warfarin maintenance dose in northern Chinese patients with mechanical heart valve replacement. Medicine (Baltimore) 2017;96:e5658. https://doi.org/10.1097/MD.0000000000005658 24. John SE, Antony D, Eaaswarkhanth M, Hebbar P, Alkayal F, Tuomilehto J, et al. Genetic variants associated with warfarin dosage in Kuwaiti population. Pharmacogenomics 2017;18:757-64. https://doi.org/10.2217/pgs-2017-0020 25. del Campo M, Roberts G. Changes in Warfarin Sensitivity During Decompensated Heart Failure and Chronic Obstructive Pulmonary Disease. Ann Pharmacother 2015;49:962-8. https://doi.org/10.1177/1060028015590438 26. Vear SI, Ayers GD, Van Driest SL, Sidonio RF, Stein CM, Ho RH. The impact of age and CYP2C9 and VKORC1 variants on stable warfarin dose in the paediatric population. Br J Haematol 2014;165:832-5. https://doi.org/10.1111/bjh.12817 27. Harrington DJ, Gorska R, Wheeler R, Davidson S, Murden S, Morse C, et al. Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 2008;6:1663-70. https://doi.org/10.1111/j.1538-7836.2008.03116.x 28. Yoon YR, Shon JH, Kim MK, Lim YC, Lee HR, Park JY, et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 2001;51:277-80. https://doi.org/10.1046/j.1365-2125.2001.00340.x 29. Zhang J, Chen Z, Chen C. Impact of CYP2C9, VKORC1 and CYP4F2 genetic polymorphisms on maintenance warfarin dosage in Han-Chinese patients: A systematic review and meta-analysis. Meta Gene 2016;9:197-209. https://doi.org/10.1016/j.mgene.2016.07.002 30. Hirata TDC, Dagli-Hernandez C, Genvigir FDV, Lauschke VM, Zhou Y, Hirata MH, et al. Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients. Mol Diagn Ther 2021;25:735-55. https://doi.org/10.1007/s40291-021-00549-z 31. Colàs-Campàs L, Royo JL, Montserrat MV, Marzo C, Molina-Seguín J, Benabdelhak I, et al. The rs2108622 polymorphism is related to the early risk of ischemic stroke in non-valvular atrial fibrillation subjects under oral anticoagulation. Pharmacogenomics J 2018;18:652-6. https://doi.org/10.1038/s41397-017-0007-z [DOI:10.1186/s12916-018-1093-8]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zahedifar S, Ghadami S, Eslami M, Tavalaie M, Afshari M. Association between genes polymorphisms in CYP4F2 (rs2108622), VKORC1 (rs9923231,rs2884737), CYP2C9*2 (rs1799853) for required therapeutic dose of warfarin in patients referred to cardiovascular centers in Tehran Province. MEDICAL SCIENCES 2023; 33 (2) :151-161
URL: http://tmuj.iautmu.ac.ir/article-1-2054-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 33, Issue 2 (summer 2023) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4642