1. Syn NL, Wong AL, Lee SC, Teoh HL, Yip JWL, Seet RC, et al. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: a randomized controlled trial. BMC Med 2018;16:104.
2. Porter WR. Warfarin: history, tautomerism and activity. J Comput Aided Mol Des 2010;24:553-73.
https://doi.org/10.1007/s10822-010-9335-7
3. Wilkinson TJ, Sainsbury R. Evaluation of a warfarin initiation protocol for older people. Intern Med J 2003;33:465-7.
https://doi.org/10.1046/j.1445-5994.2003.00452.x
4. Gedge J, Orme S, Hampton KK, Channer KS, Hendra TJ. A comparison of a low-dose warfarin induction regimen with the modified Fennerty regimen in elderly inpatients. Age Ageing 2000;29:31-4.
https://doi.org/10.1093/ageing/29.1.31
5. Poller L, Shiach CR, MacCallum PK, Johansen AM, Münster AM, Magalhães A, et al. Multicentre randomised study of computerised anticoagulant dosage. European Concerted Action on Anticoagulation. Lancet 1998;352:1505-9.
https://doi.org/10.1016/S0140-6736(98)04147-6
6. Fennerty A, Dolben J, Thomas P, Backhouse G, Bentley DP, Campbell IA, et al. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J 1984;288:1268-70.
https://doi.org/10.1136/bmj.288.6426.1268
7. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yale SH, et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res 2007;5:8-16.
https://doi.org/10.3121/cmr.2007.724
8. Xue L, Zhang Y, Xie C, Zhou L, Liu L, Zhang H, et al. Relationship between warfarin dosage and international normalized ratio: a dose-response analysis and evaluation based on multicenter data. Eur J Clin Pharmacol 2019;75:785-94.
https://doi.org/10.1007/s00228-019-02655-8
9. Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One 2012;7:e44064.
https://doi.org/10.1371/journal.pone.0044064
10. Liang R, Wang C, Zhao H, Huang J, Hu D, Sun Y. Influence of CYP4F2 genotype on warfarin dose requirement-a systematic review and meta-analysis. Thromb Res 2012;130:38-44.
https://doi.org/10.1016/j.thromres.2011.11.043
11. Yang L, Ge W, Yu F, Zhu H. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement--a systematic review and meta analysis. Thromb Res 2010;125: e159-66.
https://doi.org/10.1016/j.thromres.2009.10.017
12. Sun Y, Wu Z, Li S, Qin X, Li T, Xie L, et al. Impact of gamma-glutamyl carboxylase gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Thromb Res 2015;135:739-47.
https://doi.org/10.1016/j.thromres.2015.01.029
13. Liu HQ, Zhang CP, Zhang CZ, Liu XC, Liu ZJ. Influence of two common polymorphisms in the EPHX1 gene on warfarin maintenance dosage: a meta-analysis. Biomed Res Int 2015;2015:564149.
https://doi.org/10.1155/2015/564149
14. Henderson LM, Robinson RF, Ray L, Khan BA, Li T, Dillard DA, et al. VKORC1 and Novel CYP2C9 Variation Predict Warfarin Response in Alaska Native and American Indian People. Clin Transl Sci 2019;12:312-20.
https://doi.org/10.1111/cts.12611
15. Wu AH, Wang P, Smith A, Haller C, Drake K, Linder M, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 2008;9:169-78.
https://doi.org/10.2217/14622416.9.2.169
16. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R Jr., et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 2007;53:1199-205.
https://doi.org/10.1373/clinchem.2006.078139
17. Harikrishnan S, Koshy L, Subramanian R, Sanjay G, Vineeth CP, Nair AJ, et al. Value of VKORC1 (-1639G>A) rs9923231 genotyping in predicting warfarin dose: A replication study in South Indian population. Indian Heart J 2018;70:S110-5.
https://doi.org/10.1016/j.ihj.2018.07.006
18. Li J, Chen T, Jie F, Xiang H, Huang L, Jiang H, et al. Impact of VKORC1, CYP2C9, CYP1A2, UGT1A1, and GGCX polymorphisms on warfarin maintenance dose: Exploring a new algorithm in South Chinese patients accept mechanical heart valve replacement. Medicine (Baltimore) 2022;101:e29626.
https://doi.org/10.1097/MD.0000000000029626
19. Luo Z, Li X, Zhu M, Tang J, Li Z, Zhou X, et al. Identification of novel variants associated with warfarin stable dosage by use of a two-stage extreme phenotype strategy. J Thromb Haemost 2017;15:28-37.
https://doi.org/10.1111/jth.13542
20. van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ. Effect of study setting on anticoagulation control: a systematic review and metaregression. Chest 2006;129:1155-66.
https://doi.org/10.1378/chest.129.5.1155
21. Ali M, Kadhim H, Sahib A, Abdulamir A, Altawil R. The Effect of CYP2C9 and VKORC1 Genetic Polymorphism on Warfarin Dose Requirements in a Sample of Iraqi Patients. Journal of Kerman University of Medical Sciences 2021;28:139-49. [In Persian]
22. Li W, Zhao P, Chen L, Lai X, Shi G, Li L, et al. Impact of CYP2C9, VKORC1, ApoE and ABCB1 polymorphisms on stable warfarin dose requirements in elderly Chinese patients. Pharmacogenomics 2020;21:101-10.
https://doi.org/10.2217/pgs-2019-0139
23. Liu R, Cao J, Zhang Q, Shi XM, Pan XD, Dong R. Clinical and genetic factors associated with warfarin maintenance dose in northern Chinese patients with mechanical heart valve replacement. Medicine (Baltimore) 2017;96:e5658.
https://doi.org/10.1097/MD.0000000000005658
24. John SE, Antony D, Eaaswarkhanth M, Hebbar P, Alkayal F, Tuomilehto J, et al. Genetic variants associated with warfarin dosage in Kuwaiti population. Pharmacogenomics 2017;18:757-64.
https://doi.org/10.2217/pgs-2017-0020
25. del Campo M, Roberts G. Changes in Warfarin Sensitivity During Decompensated Heart Failure and Chronic Obstructive Pulmonary Disease. Ann Pharmacother 2015;49:962-8.
https://doi.org/10.1177/1060028015590438
26. Vear SI, Ayers GD, Van Driest SL, Sidonio RF, Stein CM, Ho RH. The impact of age and CYP2C9 and VKORC1 variants on stable warfarin dose in the paediatric population. Br J Haematol 2014;165:832-5.
https://doi.org/10.1111/bjh.12817
27. Harrington DJ, Gorska R, Wheeler R, Davidson S, Murden S, Morse C, et al. Pharmacodynamic resistance to warfarin is associated with nucleotide substitutions in VKORC1. J Thromb Haemost 2008;6:1663-70.
https://doi.org/10.1111/j.1538-7836.2008.03116.x
28. Yoon YR, Shon JH, Kim MK, Lim YC, Lee HR, Park JY, et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 2001;51:277-80.
https://doi.org/10.1046/j.1365-2125.2001.00340.x
29. Zhang J, Chen Z, Chen C. Impact of CYP2C9, VKORC1 and CYP4F2 genetic polymorphisms on maintenance warfarin dosage in Han-Chinese patients: A systematic review and meta-analysis. Meta Gene 2016;9:197-209.
https://doi.org/10.1016/j.mgene.2016.07.002
30. Hirata TDC, Dagli-Hernandez C, Genvigir FDV, Lauschke VM, Zhou Y, Hirata MH, et al. Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients. Mol Diagn Ther 2021;25:735-55.
https://doi.org/10.1007/s40291-021-00549-z
31. Colàs-Campàs L, Royo JL, Montserrat MV, Marzo C, Molina-Seguín J, Benabdelhak I, et al. The rs2108622 polymorphism is related to the early risk of ischemic stroke in non-valvular atrial fibrillation subjects under oral anticoagulation. Pharmacogenomics J 2018;18:652-6.
https://doi.org/10.1038/s41397-017-0007-z [
DOI:10.1186/s12916-018-1093-8]