1- PhD Student in Microbiology, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran 2- Assistant Professor of Microbiology, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran , ali.nojoumi@gmail.com 3- Associate Professor of Medical Virology, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran 4- Professor of Medical Bacteriology, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran 5- Assistant Professor of Cellular and Molecular Immunology, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract: (615 Views)
Background: Extracellular vesicles (EVs) are nano- to micron-sized vesicles with the ability to transport bioactive cargos. All types of cells have the ability to release EVs, which have been demonstrated to be involved in a number of essential cell functions. There are various methods for isolating EVs, each with advantages and disadvantages. The purpose of this study was to invistigate at the non-ultra centrifugation method and ultra-centrifugation method for isolating EVs. Materials and methods: Clostridium perfringensATCC13124 was used in this experimental study. Following culture, EVs were extracted using two methods: Non-Ultra method and Ultra-method. To examine chemical characteristics, the EV protein concentration was measured using a NanoDrop device, and the EV protein pattern was identified using SDS-PAGE. Transmission electron microscopy (TEM) was utilized to examine the EVs' physical properties. Results: Our results showed that the EVs isolated by the Ultra-method had a higher protein content compared to the Non-Ultra method (3.17 and 1.46 mg/ml, respectively).The Ultra-method isolated more and larger EVs compared to the Non-Ultra method. Also, protein patterns of the EVs by SDS-PAGE method were similar in both methods. Conclusion: The present study showed that the Ultra-method can be a more efficient and cost-effective way for isolation EVs from Clostridium perfringens than the Non-Ultra method.
1. Bishop D, Work E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Bioch J 1965;96:567. [DOI:10.1042/bj0960567]
2. Bose S, Aggarwal S, Singh DV, Acharya N. Extracellular vesicles: An emerging platform in gram-positive bacteria. Microb Cell 2020;7:312. [DOI:10.15698/mic2020.12.737]
3. Takeo K, Uesaka I, Uehira K, Nishiura M. Fine structure of Cryptococcus neoformans grown in vitro as observed by freeze-etching. J Bacteriol 1973;113:1442-8. [DOI:10.1128/jb.113.3.1442-1448.1973]
4. Dorward DW, Garon CF. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria. Appl Environ Microbiol 1990;56:1960-2. [DOI:10.1128/aem.56.6.1960-1962.1990]
5. Shockman GD, Barren JF. Structure, function, and assembly of cell walls of gram-positive bacteria. Ann Rev Microbiol 1983;37:501-27. [DOI:10.1146/annurev.mi.37.100183.002441]
6. Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 2003;83:91-7. [DOI:10.1016/S1472-9792(02)00089-6]
8. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 2007;6:48-59. [DOI:10.1128/EC.00318-06]
9. Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, et al. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 2007;3:e62. [DOI:10.1371/journal.ppat.0030062]
10. Van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost 2013;11:36-45. [DOI:10.1111/jth.12254]
11. Biedka S, Eutsey R, Hiller L, Minden JS. Membrane Protein Comparison Between Cell Membranes and ExtracellularVvesicle Membranes of S. pneumoniae Provide Insights into Extracellular Vesicle Formation and Shedding. FASEB J 2022;36. [DOI:10.1096/fasebj.2022.36.S1.R6072]
12. Turunen J, Tejesvi MV, Suokas M, Virtanen N, Paalanne N, Kaisanlahti A, et al. Bacterial extracellular vesicles in the microbiome of first-pass meconium in newborn infants. Pediatr Res 2023;93:887-96. [DOI:10.1038/s41390-022-02242-1]
13. Schaack B, Hindré T, Quansah N, Hannani D, Mercier C, Laurin D. Microbiota-Derived extracellular vesicles detected in human blood from healthy donors. Int J Mol Sci 2022;23:13787. [DOI:10.3390/ijms232213787]
14. Jiang Y, Kong Q, Roland KL, Curtiss III R. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int J Med Microbiol 2014;304:431-43. [DOI:10.1016/j.ijmm.2014.02.006]
15. Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn S-J, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 2014;196:2355-66. [DOI:10.1128/JB.01493-14]
16. Ibrahim A, Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology. Ann Rev Physiol 2016;78:67-83. [DOI:10.1146/annurev-physiol-021115-104929]
17. Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 2014;5:370. [DOI:10.3389/fimmu.2014.00370]
18. Balhuizen MD, Veldhuizen EJ, Haagsman HP. Outer membrane vesicle induction and isolation for vaccine development. Front Microbiol 2021;12:629090. [DOI:10.3389/fmicb.2021.629090]
19. Martinón-Torres F, Safadi MAP, Martinez AC, Marquez PI, Torres JCT, Weckx LY, et al. Reduced schedules of 4CMenB vaccine in infants and catch-up series in children: Immunogenicity and safety results from a randomised open-label phase 3b trial. Vaccine 2017;35:3548-57. [DOI:10.1016/j.vaccine.2017.05.023]
20. Lee T-Y, Kim C-U, Bae E-H, Seo S-H, Jeong DG, Yoon S-W, et al. Outer membrane vesicles harboring modified lipid A moiety augment the efficacy of an influenza vaccine exhibiting reduced endotoxicity in a mouse model. Vaccine 2017;35:586-95. [DOI:10.1016/j.vaccine.2016.12.025]
21. Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol 2012;3:162. [DOI:10.3389/fphys.2012.00162]
22. Cantin R, Diou J, Bélanger D, Tremblay AM, Gilbert C. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 2008;338:21-30. [DOI:10.1016/j.jim.2008.07.007]
23. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 2007;292:F1657-F61. [DOI:10.1152/ajprenal.00434.2006]
24. Obana N, Nakao R, Nagayama K, Nakamura K, Senpuku H, Nomura N. Immunoactive clostridial membrane vesicle production is regulated by a sporulation factor. Infect Immun 2017;85:e00096-17. [DOI:10.1128/IAI.00096-17]
25. Sharifat Salmani A, Siadat SD, Norouzian D, Izadi Mobarakeh J, Kheirandish M, Zangeneh M, et al. Outer membrane vesicle of Neisseria meningitidis serogroup B as an adjuvant to induce specific antibody response against the lipopolysaccharide of Brucella abortus S99. Ann Microb 2009;59:145-9. [DOI:10.1007/BF03175612]
26. Badi SA, Khatami S, Irani S, Siadat SD. Induction effects of bacteroides fragilis derived outer membrane vesicles on toll like receptor 2, toll like receptor 4 genes expression and cytokines concentration in human intestinal epithelial cells. Cell J 2019;21:57.
27. Ashrafian F, Shahriary A, Behrouzi A, Moradi HR, Keshavarz Azizi Raftar S, Lari A, et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol 2019;10:2155. [DOI:10.3389/fmicb.2019.02155]
28. Rabiei N, Ahmadi Badi S, Ettehad Marvasti F, Nejad Sattari T, Vaziri F, Siadat S. Comparison of two isolation methods for extracellular vesicles from Faecalibacterium prausnitzii A2-165. Vaccine Research 2018;5:27-31. [DOI:10.29252/vacres.5.1.27]
29. Elhenawy W, Debelyy MO, Feldman MF. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. MBio 2014;5: e00909-14. [DOI:10.1128/mBio.00909-14]
30. Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 2007;7:3143-53. [DOI:10.1002/pmic.200700196]
31. Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 2010;107:19002-7. [DOI:10.1073/pnas.1008843107]
32. Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach. Int J Mol Med 2015;36:11-7. [DOI:10.3892/ijmm.2015.2194]
33. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int 2018;2018. [DOI:10.1155/2018/8545347]
34. Maas SL, De Vrij J, Van Der Vlist EJ, Geragousian B, Van Bloois L, Mastrobattista E, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release 2015;200:87-96. [DOI:10.1016/j.jconrel.2014.12.041]
35. Kang C-s, Ban M, Choi E-J, Moon H-G, Jeon J-S, Kim D-K, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS One 2013;8:e76520. [DOI:10.1371/journal.pone.0076520]
36. Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol 2017;17:1-8. [DOI:10.1186/s12866-017-0977-7]
Ostadmohammadi S, Nojoumi S A, Fateh A, Siadat S D, Sotoodehnejadnematalahi F. Comparison of two extraction methods of extracellular vesicles from Clostridium perfringens. MEDICAL SCIENCES 2024; 34 (2) :121-128 URL: http://tmuj.iautmu.ac.ir/article-1-2160-en.html