1- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran 2- Department of Medical Biotechnology, Applied Biophotonics Research Center, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran 3- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , sp.khaleghi@gmail.com
Abstract: (317 Views)
Background: Biological and microbial synthesis processes of nanoparticles are a safe and useful option compared to physical and chemical methods due to their compatibility with the environment and nature and their cost-effectiveness. Probiotics have beneficial effects in improving the body's immune system and are a suitable alternative in the treatment of bacterial infections. The aim of this study was the synthesis of protein nanoparticles containing silver with the probiotic bacteria Bifidobacterium breve. Materials and methods: First, probiotic bacteria Bifidobacterium breve were cultured and then silver albumin nanoparticles (Ag-Alb-NPs) were synthesized. X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) tests to investigate the physical and chemical properties of Ag-Alb-NPs used. Results: Ag-Alb-NPs had spherical, crystalline, semi-crystalline morphology and structure. They had O-H, N-H and C-H bonds, C=C bonds in aromatic rings and C-N bonds in amine compounds and O-H and C-H bonds in CH2 and CH3 groups, N-H, C-O bonds in the structure of C-O-C and C-OH functional groups. In addition, DLS results of albumin-silver nanoparticles and silver nanoparticles showed that they were 259 and 85.3 nm in size, respectively, and the graph was of single peak type. Conclusion: In general, it was concluded that the synthesized Ag-Alb-NPs had suitable structural and physicochemical characteristics that can be used for future studies.
1. Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chem Soc Rev 2015;44:5793-805. [DOI:10.1039/C4CS00362D]
2. ravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014;9:385-406.
3. Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed Pharmacother 2019;109:2561-2572. [DOI:10.1016/j.biopha.2018.11.116]
4. Oza, G., et al., Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. J Materials Sci 2020; 55:1309-1330. [In Ukrainian] [DOI:10.1007/s10853-019-04121-3]
5. Lateef, A., S.A. Ojo, and S.M. Oladejo, Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Pro Biochem 2016;51:1406-12. [DOI:10.1016/j.procbio.2016.06.027]
6. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, et al. Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 2018;12:857-863. [DOI:10.1049/iet-nbt.2017.0299]
7. Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 2019;47:844-851. [DOI:10.1080/21691401.2019.1577878]
8. Wang X, Lee SY, Akter S, Huq MA. Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7. Polymers (Basel) 2022;14:1834. [DOI:10.3390/polym14091834]
9. Khalifa E, Abdel Rafea M, Mustapha N, Sultan R, Hafez E. Silver nanoparticles synthesized by probiotic bacteria and antibacterial role in resistant bacteria. AMB Express 2023;13:140. [DOI:10.1186/s13568-023-01651-7]
10. Bhuyar P, Rahim MHA, Sundararaju S. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef Univ J Basic Appl Sci 2020;9:1-15. [DOI:10.1186/s43088-019-0031-y]
11. Adebayo AE, Oke AM, Lateef A, Oyatokun AA, Abisoye OD, Adiji IP, et al. Biosynthesis of silver, gold and silver-gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnol Environ Eng 2019;4:1-15. [DOI:10.1007/s41204-019-0060-8]
12. Abou El-Nour KM. Synthesis and applications of silver nanoparticles. Arab J Chem 2010;3:35-140. [DOI:10.1016/j.arabjc.2010.04.008]
13. Azeez MA, Lateef A, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC. Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J Cluster Sci 2017;28: 49-164. [DOI:10.1007/s10876-016-1055-2]
15. Joshi M, Nagarsenkar M, Prabhakar B. Albumin nanocarriers for pulmonary drug delivery: An attractive approach. J Drug Deliv Sci Technol 2020; 56: 101529. [DOI:10.1016/j.jddst.2020.101529]
16. Son S. Self-cross-linked human serum albumin Nano carriers for systemic delivery of polymerized siRNA to tumors. Biomaterials 2013;34:9475-9485. [DOI:10.1016/j.biomaterials.2013.08.085]
17. Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Mats Sci Eng C 2017;81:607-26. [DOI:10.1016/j.msec.2017.08.004]
18. Lee HJ, Yeo SY, Jeong SH, Antibacterial effect of Nano sized silver colloidal solution on textile fabrics. J Mat Sci 2003; 38: 2199-2204. [DOI:10.1023/A:1023736416361]
19. Ghosh S, Sarkar B, Kaushik A, Mostafavi E. Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. Sci Total Environ 2022;838:156212. [DOI:10.1016/j.scitotenv.2022.156212]
20. Gomez-Zavaglia A, Cassani L, Hebert EM, Gerbino E. Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Res Int 2022;155:111097. [DOI:10.1016/j.foodres.2022.111097]
21. Abdoli M, Mohammadi G, Mansouri K, Khaledian S, Taran M, Martinez F. A review on anticancer, antibacterial and photo catalytic activity of various nanoparticles synthesized by probiotics. J Biotechnol 2022;354:63-71. [DOI:10.1016/j.jbiotec.2022.06.005]
22. Peters TJr. All about albumin: biochemistry, genetics, and medical applications. New York: Academic press; 1995. [DOI:10.1016/B978-012552110-9/50006-4]
23. Jahanban-Esfahlan A, Ostadrahimi A, Jahanban-Esfahlan R, Roufegarinejad L, Tabibiazar M, Amarowicz R. Recent developments in the detection of bovine serum albumin. Int J Biol Macromol 2019;138:602-617. [DOI:10.1016/j.ijbiomac.2019.07.096]
24. Sharma S, Sharma N, Kaushal N. Comparative Account of Biogenic Synthesis of Silver Nanoparticles Using Probiotics and Their Antimicrobial Activity Against Challenging Pathogens. BioNanoScience 2022;12: 833-840. [DOI:10.1007/s12668-022-01004-x]
25. Aziz Mousavi SMA, Mirhosseini SA, Rastegar Shariat Panahi M, Mahmoodzadeh Hosseini H. Characterization of biosynthesized silver nanoparticles using Lactobacillus rhamnosus GG and its in vitro assessment against colorectal cancer cells. Probiotics Antimicrob Proteins 2020;12:740-746. [DOI:10.1007/s12602-019-09530-z]
26. Siddiqui AJ, Patel M, Jahan S, Abdelgadir A, Alam MJ, Alshahrani MM, et al. Silver Nanoparticles Derived from Probiotic Lactobacillus casei-a Novel Approach for Combating Bacterial Infections and Cancer. Probiotics Antimicrob Proteins 2023;12. [DOI:10.1007/s12602-023-10201-3]
27. Awadelkareem AM, Siddiqui AJ, Noumi E, Ashraf SA, Hadi S, Snoussi Met al. Biosynthesized Silver Nanoparticles Derived from Probiotic Lactobacillus rhamnosus (AgNPs-LR) Targeting Biofilm Formation and Quorum Sensing-Mediated Virulence Factors. Antibiotics (Basel) 2023;12:986. [DOI:10.3390/antibiotics12060986]
28. Mathew TV, Kuriakose S. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin. Colloids Surf B Biointerfaces 2013;101:14-8. [DOI:10.1016/j.colsurfb.2012.05.017]
29. Huang R, Carney RP, Ikuma K, Stellacci F, Lau BL. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. ACS Nano 2014;8:5402-12. [DOI:10.1021/nn501203k]
30. Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, et al. Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res Int 2016;23:4149-63. [DOI:10.1007/s11356-015-4570-z]
31. Rajeshwari A, Pakrashi S, Dalai S, Madhumita V, Iswarya N, et al., Spectroscopic studies on the interaction of bovine serum albumin with Al2O3 nanoparticles. J Luminescence 2014;145:859-865. [DOI:10.1016/j.jlumin.2013.08.073]
32. Khan S, Gupta A, Nandi CK., Controlling the Fate of Protein Corona by Tuning Surface Properties of Nanoparticles. J Physic Chem Letters 2013. 4:3747-3752. [DOI:10.1021/jz401874u]
33. Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 2018;58:297-317. [DOI:10.1080/10408398.2016.1160363]
34. Babushkina EA, Belokopytova LV, Grachev A, Meko DM, Vagano EA. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Regional Envir Change 2017; 17:1725-37. [DOI:10.1007/s10113-017-1137-1]
35. Martin MN, Allen AJ, MacCuspie RI, Hackley VA. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir 2014;30:11442-52. [DOI:10.1021/la502973z]
36. Zheng XS, Hu P, Cui Y, Zong C, Feng JM, Wang X, et al. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal Chem 2014;86:12250-57. [DOI:10.1021/ac503404u]
Parsi K, Javanmardi M, Khaleghi S. Microbial synthesis of protein nanoparticles containing silver with Bifidobacterium breve and evaluation their physiochemical properties. MEDICAL SCIENCES 2024; 34 (4) :345-356 URL: http://tmuj.iautmu.ac.ir/article-1-2190-en.html